Menü English Ukrainian Rusça Ana Sayfa

Hobiler ve profesyoneller için ücretsiz teknik kütüphane Ücretsiz teknik kütüphane


RADYO ELEKTRONİK VE ELEKTRİK MÜHENDİSLİĞİ ANSİKLOPEDİSİ
Ücretsiz kütüphane / Radyo-elektronik ve elektrikli cihazların şemaları

Hoparlör empedans ölçer. Radyo elektroniği ve elektrik mühendisliği ansiklopedisi

Ücretsiz teknik kütüphane

Radyo elektroniği ve elektrik mühendisliği ansiklopedisi / Ölçüm teknolojisi

makale yorumları makale yorumları

Это устройство измеряет модуль и фазу электрического импеданса громкоговорителя в полосе звуковых частот и весьма полезно для любителей звукотехники, самостоятельно конструирующих или модернизирующих громкоговорители. Знание этих параметров позволяет правильно настроить фазоинвертор, выбрать и рассчитать разделительные фильтры громкоговорителя, улучшить его фазовую характеристику.

Частотная зависимость модуля сопротивления, а также фазового сдвига между током и напряжением на катушке типовой низкочастотной головки громкоговорителя приведена на рис. 1. Импеданс ниже частоты собственного резонанса имеет индуктивный характер, при резонансе - активный, а выше его - сначала емкостный и далее с повышением частоты сигнала вновь становится индуктивным. Фазово-частотная характеристика импеданса позволяет получить дополнительные сведения, необходимые для расчета и анализа работы громкоговорителя.

Hoparlör empedans ölçer

Пользуясь предлагаемым здесь устройством, можно определять указанные характеристики в диапазоне частот 17,4 Гц...29,4 кГц. Пределы измерений модуля импеданса и фазового угла составляют соответственно |Z|= 0...200 Ом и f=+90°. Результаты измерения отражаются в виде напряжений постоянного тока 0...200 мВ и 0...+900 мВ, численно совпадающих с соответствующими значениями параметров. Для ускорения измерений к устройству можно подключить два цифровых вольтметра или мультиметра общего назначения. Возможно использование самописцев.

Принцип работы измерителя, схема которого приведена на рис. 2, заключается в следующем. В двух частотных диапазонах, перекрывающих всю полосу звуковых частот, генератор вырабатывает два напряжения синусоидальной формы, которые различаются по фазе на 90° (квадратурные сигналы). Один из них в виде стабильного тока подается на исследуемую нагрузку - громкоговоритель или головку, а другой, опережающий по фазе на 90°, преобразуется в сигнал прямоугольной формы - меандр. Фаза меандра является опорной для измерения сдвига фаз между синусоидальным током и напряжением на головке. При условии стабильности тока через катушку напряжение на ней пропорционально модулю импеданса.

Hoparlör empedans ölçer
(büyütmek için tıklayın)

Генератор в измерителе построен с применением ОУ и усилителя тока, управляемого напряжением (ИТУН). Для обеспечения необходимой точности установки частоты диапазон звуковых частот генератора разделен на два. Сдвоенные переменные резисторы настройки (R6 и R8) включены последовательно с ограничительными резисторами. Для них необходима экспоненциальная характеристика изменения сопротивления (группа В). С помощью переключателя SA1 выбирают диапазон частот генератора: в одном положении - 17,4...1000 Гц, в другом - 530 Гц...29,4 кГц.

В генераторе ОУ DA2.4 частотозадающими элементами являются перестраиваемый фазовый фильтр и инвертирующий интегратор на ИТУН DA1 и ОУ DA2.3, охваченных обратной связью. В интеграторе фазовый сдвиг составляет 90°, поэтому условие баланса фаз генератора выполняется, когда фазовый фильтр создает фазовый сдвиг -90°. В сумме поворот фазы составляет 0°.

Рабочая частота fG генератора определяется элементами R8, R9, C10 (или C9):

Для сохранения на выходе интегратора амплитуды колебаний в диапазоне рабочих частот его входной ток должен изменяться пропорционально частоте. Соответствующее изменение выходного тока DA1 достигается регулировкой управляющего тока ИТУН (по выводу 5) переменным резистором R6, объединенным с другим частотозадающим резистором R8.

Неидеальное согласование сопротивлений резисторов R6 и R8 в полосе частот приводит к изменению амплитуды генерируемого напряжения, но цепь авторегулирования восстанавливает ее необходимую величину. Выпрямленный диодом VD1 ток, пропорциональный амплитуде колебаний, алгебраически суммируется через резистор R12 на входе интегратора DA2.2 с током через резисторы R13, R14. С увеличением сигнала выходное напряжение интегратора DA2.2 понижается, уменьшается и ток ИТУН DA1. В результате устанавливается стабильная амплитуда колебаний, равная 2,14 В.

Корректирующий интегратор на DA2.1 выполняет функцию стабилизации режима по постоянному току, образуя цепь следящей обратной связи, и поддерживает напряжение на выходе DA2.4 с точностью нескольких милливольт.

Hoparlör empedans ölçer

Вырабатываемое генератором напряжение преобразуется резистором R15 в соответствующий ток нагрузки. Ввиду относительно низкого сопротивления этого резистора в сравнении с нагрузкой (Zн макс= 200 Ом), точность в диапазоне измерений параметра обеспечивает специальный преобразователь напряжения в ток: выпрямитель переменного тока на DA3 совместно с R15 действует по отношению к проверяемой головке как генератор тока.

Для пояснения на рис. 3 приведена схема источника тока Хауленда, который образован из конвертера отрицательного сопротивления (подробнее о нем можно прочитать в книге В. Л. Шило "Линейные интегральные схемы". - М: Радио и связь, 1979. - Прим. ред.).

Eğer

внутреннее сопротивление Ri источника и протекающий через нагрузку ток IL от источника напряжения Ue определяются из соотношений:

Eğer

внутреннее сопротивление Ri достигает очень большой величины.

Отметим, что описанные свойства генератора тока сохраняются и при введении в него элементов двухполупериодного выпрямителя. Так, действующее внутреннее сопротивление возрастает приблизительно до 36 кОм. Резисторы R16-R20 необходимо использовать точные (отклонение не более 1%). При самостоятельном расчете сопротивления резисторов надо принимать во внимание и R22, ориентируясь на значения коэффициентов

Для DA3 использован ОУ с высокой граничной частотой усиления, при этом частотно-зависимой ошибкой выпрямления можно пренебречь. Этот широкополосный ОУ без обратной связи имеет усиление на постоянном токе около 1500, поэтому диоды VD2 и VD3 выбраны с малым прямым напряжением. Конденсаторы С11 и С13 отделяют DA3 от диодов в цепи ООС, и напряжение смещения ОУ не влияет на результат измерения. Его входной каскад на p-n-p транзисторах имеет типовое значение тока базы IB= 2,8 мкА, что обеспечивает падение напряжения на резисторе R22 относительно выхода ОУ DA3 около 0,9 В, достаточное для поляризации танталового конденсатора С13.

Выпрямленное для измерения |ZН| напряжение снимается с катода диода VD2. Оно состоит из двух составляющих: отрицательная полуволна соответствует напряжению на нагрузке ZН, положительная полуволна напряжения усиливается в aльфа раз. Интегрирующая цепь R21C14 формирует из этого несимметричного по амплитуде переменного напряжения среднее значение UC14, которое представляет собой выходное выпрямленное напряжение (в милливольтах), численно равное модулю импеданса (в омах):

Величину фазового сдвига между измеряемым током и действующим на нагрузке напряжением определяют с помощью двух компараторов DA4 и DA5 и микросхемы DD1. Независимо от сопротивления нагрузки на резисторе R23 действует переменное напряжение, двойная амплитуда которого больше суммы действующих на диодах VD2, VD3 напряжений, поэтому компаратор DA4 четко переключается и при низкоомной нагрузке. Действующее на выходе DA2.3 синусоидальное напряжение преобразуется компаратором DA5 в напряжение прямоугольной формы.

После компараторов оба сигнала обрабатываются четырьмя параллельно включенными элементами "Исключающее ИЛИ" микросхемы DD1, напряжения питания которой равны по величине относительно общего провода. В результате после интегрирования импульсов напряжения с выходов DD1 элементами R28-R33, С19 и С20 усредненное его значение соответствует фазовому сдвигу (численно в градусах) между измеряемым током и падающим на сопротивлении ZН переменным напряжением.

Питание устройства обеспечивает отдельный блок с интегральными стабилизаторами напряжения. Он обеспечивает двуполярное относительно общего провода питающее напряжение +6,7 В с общей регулировкой величины в пределах +15%.

Для калибровки измерителя импеданса пригоден точный резистор сопротивлением 200 Ом. Тогда при частоте сигнала, например, 100 Гц резистором R14 устанавливают на нагрузке напряжение UZ= 200 мВ. Напряжение Uf нужно устанавливать только подстройкой напряжения в блоке питания. Цепь R24C16 компенсирует некоторый фазовый сдвиг, вызываемый активным выпрямителем на DA3. Вследствие этого установку подстроечного резистора R24 на высоких частотах производят так, чтобы для безындуктивного резистора эквивалента нагрузки фазовый сдвиг отсутствовал (f=0°).

Для калибровки фазометра временно связывают выходы обоих компараторов с шиной питания -6,7 В и движок подстроечного резистора R33 устанавливают в положение, при котором получается Uf =-900 мВ.

О возможности замены элементов прибора.

Микросхему ОУ TL084 допустимо заменить TL074, TL082 или отечественной К574УД2 (две последние микросхемы содержат по два ОУ в корпусе). В качестве усилителей и компараторов DA3-DA5 можно использовать микросхему К1401УД6, содержащую по одному ОУ и компаратору. Впрочем, компараторы LM311 заменяемы другими, имеющими выход с открытым коллектором - LM306, LM393, К554СА3, КР521СА3. ОУ ЕL2044CN можно заменить другим широкополосным; входной каскад большинства таких ОУ выполнен на транзисторах структуры n-p-n и поэтому потребуется изменить полярность включения конденсатора С13.

Диоды VD1-VD3 (с барьером Шоттки) имеют пониженное напряжение в прямом включении; их заменяют КД922(А-В), КД523А. Впрочем, если широкополосный ОУ DA3 имеет усиление более 5000, допустимо применить диоды серий КД503, КД518, КД520.

CD4030 имеет отечественный аналог К561ЛП2. В выпрямителе БП возможно использовать диоды КД521, КД522 с любым индексом и микросхему регулируемого двухполярного стабилизатора напряжения КР142ЕН6 (NE5554).

Отметим также, что в качестве генератора квадратурных сигналов пригоден почти любой функциональный генератор, содержащий в своей структуре интегратор и преобразователь треугольного сигнала в синусоидальный с выходным сопротивлением не более 50 Ом.

Автор: Kuhle H. Messchaltung fur Lautsprecher. - Radio Fernsehen

Diğer makalelere bakın bölüm Ölçüm teknolojisi.

Oku ve yaz yararlı bu makaleye yapılan yorumlar.

<< Geri

En son bilim ve teknoloji haberleri, yeni elektronikler:

Bahçelerdeki çiçekleri inceltmek için makine 02.05.2024

Modern tarımda, bitki bakım süreçlerinin verimliliğini artırmaya yönelik teknolojik ilerleme gelişmektedir. Hasat aşamasını optimize etmek için tasarlanan yenilikçi Florix çiçek seyreltme makinesi İtalya'da tanıtıldı. Bu alet, bahçenin ihtiyaçlarına göre kolayca uyarlanabilmesini sağlayan hareketli kollarla donatılmıştır. Operatör, ince tellerin hızını, traktör kabininden joystick yardımıyla kontrol ederek ayarlayabilmektedir. Bu yaklaşım, çiçek seyreltme işleminin verimliliğini önemli ölçüde artırarak, bahçenin özel koşullarına ve içinde yetişen meyvelerin çeşitliliğine ve türüne göre bireysel ayarlama olanağı sağlar. Florix makinesini çeşitli meyve türleri üzerinde iki yıl boyunca test ettikten sonra sonuçlar çok cesaret vericiydi. Birkaç yıldır Florix makinesini kullanan Filiberto Montanari gibi çiftçiler, çiçeklerin inceltilmesi için gereken zaman ve emekte önemli bir azalma olduğunu bildirdi. ... >>

Gelişmiş Kızılötesi Mikroskop 02.05.2024

Mikroskoplar bilimsel araştırmalarda önemli bir rol oynar ve bilim adamlarının gözle görülmeyen yapıları ve süreçleri derinlemesine incelemesine olanak tanır. Bununla birlikte, çeşitli mikroskopi yöntemlerinin kendi sınırlamaları vardır ve bunların arasında kızılötesi aralığı kullanırken çözünürlüğün sınırlandırılması da vardır. Ancak Tokyo Üniversitesi'ndeki Japon araştırmacıların son başarıları, mikro dünyayı incelemek için yeni ufuklar açıyor. Tokyo Üniversitesi'nden bilim adamları, kızılötesi mikroskopinin yeteneklerinde devrim yaratacak yeni bir mikroskobu tanıttı. Bu gelişmiş cihaz, canlı bakterilerin iç yapılarını nanometre ölçeğinde inanılmaz netlikte görmenizi sağlar. Tipik olarak orta kızılötesi mikroskoplar düşük çözünürlük nedeniyle sınırlıdır, ancak Japon araştırmacıların en son geliştirmeleri bu sınırlamaların üstesinden gelmektedir. Bilim insanlarına göre geliştirilen mikroskop, geleneksel mikroskopların çözünürlüğünden 120 kat daha yüksek olan 30 nanometreye kadar çözünürlükte görüntüler oluşturmaya olanak sağlıyor. ... >>

Böcekler için hava tuzağı 01.05.2024

Tarım ekonominin kilit sektörlerinden biridir ve haşere kontrolü bu sürecin ayrılmaz bir parçasıdır. Hindistan Tarımsal Araştırma Konseyi-Merkezi Patates Araştırma Enstitüsü'nden (ICAR-CPRI) Shimla'dan bir bilim insanı ekibi, bu soruna yenilikçi bir çözüm buldu: rüzgarla çalışan bir böcek hava tuzağı. Bu cihaz, gerçek zamanlı böcek popülasyonu verileri sağlayarak geleneksel haşere kontrol yöntemlerinin eksikliklerini giderir. Tuzak tamamen rüzgar enerjisiyle çalışıyor, bu da onu güç gerektirmeyen çevre dostu bir çözüm haline getiriyor. Eşsiz tasarımı, hem zararlı hem de faydalı böceklerin izlenmesine olanak tanıyarak herhangi bir tarım alanındaki popülasyona ilişkin eksiksiz bir genel bakış sağlar. Kapil, "Hedef zararlıları doğru zamanda değerlendirerek hem zararlıları hem de hastalıkları kontrol altına almak için gerekli önlemleri alabiliyoruz" diyor ... >>

Arşivden rastgele haberler

Tokyo'da sokak soğutması 01.11.2002

Son zamanlarda, Moskova belediye başkanının ofisinin önündeki kaldırıma, kışın en az yüz metrekarelik Moskova asfaltının buzla kaplanmaması için sıcak suyun sürüleceği borular döşendi. Tokyo'daki bir diğer sorun da, neredeyse yeşillikten yoksun olan şehrin yazın çok sıcak olması.

1900'den beri, Tokyo'daki ortalama sıcaklık 5,2 santigrat derece (Moskova'da - sadece bir buçuk derece) ve ortalama gece sıcaklığı - 7 derece arttı. Daha önce ağaçlardaki yapraklar Kasım ayında sararmışsa, şimdi yaprak dökümü yalnızca Aralık ortasında başlar. Yerel bitkiler, subtropiklerden yeni gelenler tarafından şehirde zorlanır.

Geçen kış hiç kar yağmadı. Tek bir şehirde ısınmayla mücadele etmek için, yaz aylarında sokakların altına borular döşenmesi ve Tokyo Körfezi'nin büyük derinliklerinden alınan soğuk suların içlerinden pompalanması planlanıyor. Proje yaklaşık 330 milyon dolara mal olacak.

Bu arada, şehir yetkilileri mülk sahiplerini binaların çatılarına çimenler ve bahçeler düzenlemeye teşvik ediyor - bu, taş ormandaki sıcaklığı düşürür. Bir hektarın onda biri üzerindeki tüm yeni binaların çatı bahçesine sahip olmasını gerektiren bir şehir yasası kabul edildi.

Diğer ilginç haberler:

▪ SanDisk Z410 Katı Hal Sürücüleri

▪ Lazer nanodotlar koyar

▪ Yaşlılar bilgisayar oyunlarından yararlanıyor

▪ Ofis zamanı optimizasyonu

▪ Havasız lastikler

Bilim ve teknolojinin haber akışı, yeni elektronik

 

Ücretsiz Teknik Kitaplığın ilginç malzemeleri:

▪ sitenin bölümü Seyahat etmeyi sevenler için - turistler için ipuçları. Makale seçimi

▪ Vozhzh'un makalesi kuyruğun altına düştü. Popüler ifade

▪ makale Squadron Supreme çizgi roman baskı mürekkebinde hangi alışılmadık içerik vardı? ayrıntılı cevap

▪ dut makalesi. Efsaneler, yetiştirme, uygulama yöntemleri

▪ makale 7 MHz için disko koni anteni. Radyo elektroniği ve elektrik mühendisliği ansiklopedisi

▪ makale Bisiklet jeneratörü voltaj regülatörü. Radyo elektroniği ve elektrik mühendisliği ansiklopedisi

Bu makaleye yorumunuzu bırakın:

Adı:


E-posta isteğe bağlı):


Yorum:





Bu sayfanın tüm dilleri

Ana sayfa | Kütüphane | Makaleler | Site haritası | Site incelemeleri

www.diagram.com.ua

www.diagram.com.ua
2000-2024