Menü English Ukrainian Rusça Ana Sayfa

Hobiler ve profesyoneller için ücretsiz teknik kütüphane Ücretsiz teknik kütüphane


RADYO ELEKTRONİK VE ELEKTRİK MÜHENDİSLİĞİ ANSİKLOPEDİSİ
Ücretsiz kütüphane / Radyo-elektronik ve elektrikli cihazların şemaları

Ultrasonik kusur dedektörü. Radyo elektroniği ve elektrik mühendisliği ansiklopedisi

Ücretsiz teknik kütüphane

Radyo elektroniği ve elektrik mühendisliği ansiklopedisi / Göstergeler, dedektörler, metal dedektörleri

makale yorumları makale yorumları

Дефектоскоп предназначен для обнаружения внутренних дефектов сварных швов (пор, трещин, несплавлений, шлаковых включений и др.) в металлах и некоторых пластмассах. Прибор позволяет определять, на какой глубине находится дефект в пределах 7...50 мм с точностью ±1 мм.

Рабочая частота дефектоскопа - 2,5 МГц. Время установки рабочего режима после включения питания - 0,5 с. Потребляемый ток - 30 мА. Время непрерывной работы дефектоскопа от девяти аккумуляторов Д-0,06-1,5 ч. Габариты - 94Х58Х18 мм, масса - 205 г.

Принцип работы дефектоскопа основан на свойстве ультразвуковых колебаний (УК) отражаться от внутренних дефектов материала, проводящего эти колебания. Короткий радиоимпульс преобразуется пьезопластинами В1-ВЗ искателя (рис. 1) в импульс УК, которые через слой контактирующей жидкости распространяются в материале в виде расходящегося пучка поперечных волн. Ультразвуковые колебания, отраженные от дефекта, в свою очередь, воздействуют на пьезопластины В1-ВЗ, возбуждая в них ЭДС, которая усиливается, преобразуется и подается на сигнализатор дефектов. Для устранения ложных сигналов (отражений от валика усиления шла и др.) наличие дефектов сигнализатором определяется только в объеме сплавления шва - "зоне контроля".

Ultrasonik kusur dedektörü
Ris.1

Дефектоскоп имеет два режима работы: "Поиск" и "Оценка". Ширина диаграммы направленности (рис. 1) в вертикальной плоскости в режиме "Поиск" - ф1=13°, а в режиме "Оценка" - ф2=8,5°. Это позволяет сначала определить наличие дефекта, а затем его расположение. Угол ввода (фо) зависит от сваренных материалов, для стали составляет 67°.

Принципиальная схема дефектоскопа изображена на рис. 2, а временная диаграмма его работы - на рис. 3.

Ultrasonik kusur dedektörü
Şekil.2 (büyütmek için tıklayın)

Дефектоскоп состоит из генератора радиоимпульсов, сигнализатора дефектов, широкополосного усилителя, устройства временного выравнивания амплитуды, стабилизатора напряжения питания и преобразователя. Генератор радиоимпульсов собран на динисторе V1. Импульс тока, проходящий через динистор V1, возбуждает в контуре L1B3 в режиме "Поиск" или L1B1-B3R1 в режиме "Оценка" радиоимпульс. Его длительность на уровне 0,5 составляет 0,4 мкс. Чувствительность прибора в режиме "Оценка" устанавливают резистором R43. Снятый с части катушки L1 радиоимпульс преобразуется диодом V2 в положительный импульс 1 (рис. 3), который запускает одновибратор задержки сигнализатора дефектов на транзисторах V18, V19. Длительность импульса одновибратора зависит от положения движка резистора R30. Продифференцированный импульс 2 (рис. 3) одновибратора, прошедший через инвертор на транзисторе V20, включает одновибратор "зоны контроля" сигнализатора на транзисторах V22, V23. Длительность импульса 3 (рис. 3) этого одновибратора регулируют резистором R35 "Р" (расстояние до дефекта). С коллектора транзистора V22 импульс поступает на базу транзистора V6 устройства совпадения на транзисторах V6, V7 сигнализатора.

Ultrasonik kusur dedektörü
Ris.3

Если в "зоне контроля" встречается дефект, импульс, отраженный от него и преобразованный пьезопластинами В1-ВЗ, усиливается широкополосным усилителем на микросхемах A1. A2. Для защиты усилителя от перенапряжений по входу включен двусторонний ограничитель на диодах V3, V4. Далее радиоимпульс детектируется и ограничивается в каскаде на транзисторе V5 сигнализатора дефектов и воздействует на базу транзистора V7 устройства совпадения (импульс 4 на рис. 3). Резистором R12 можно изменять порог ограничения импульсов в детекторе-ограничителе. С коллектора транзистора V8 положительный импульс запускает сначала одновибратор светового (транзисторы V9, VIO), а затем одновибратор звукового (V12, V13) индикаторов, сигнализирующих о наличии дефекта в "зоне контроля". Звуковой индикатор, кроме одновибратора-расширителя импульсов, содержит мультивибратор на транзисторах V15, V16. При наличии дефекта кратковременно зажигается светодиод H1 "Д" (дефект) и звучит сигнал в телефонах В4.

Для выравнивания чувствительности прибора по глубине залегания дефектов в дефектоскоп введено устройство временного выравнивания амплитуды радиоимпульсов на элементах R3R4C3. Оно формирует импульсы отрицательного экспоненциально возрастающего напряжения, которые поступают на вход микросхемы A1,

Стабилизатор на транзисторе V29 и преобразователь на транзисторе V26 и диодах V24, V25 обеспечивают дефектоскоп необходимыми напряжениями питания.

Разьем X1 служит для подключения внешних искателя и источника питания, а также автоматизированных и полуавтоматизированных установок при работе дефектоскопа в комплекте с ними.

В дефектоскопе конденсаторы С22 и С26 должны иметь малый ТКЕ.

Трансформатор Т1 намотан на кольцевом сердечнике из феррита М1500НМ типоразмера К16Х8Х6. Обмотка I содержит 14 витков провода ПЭВ-1 0,6, обмотка II - 13 витков провода ПЭВ-1 0,12, обмотки III и IV - по 350 витков провода ПЭВ.1 0,08.

Катушка L1 намотана на оправке диаметром 5 и длиной 3 мм и содержит 40 витков провода ПЭЛШО 0,35, отвод сделан от 8-го витка, считая от вывода, соединенного с общим проводом.

Искатель дефектоскопа (рис. 4) изготовлен из органического стекла. Пьезопластины выполнены из титаната бария, их размеры показаны на рисунке. Предварительно подогнанные по размерам, а следовательно, и по частоте пластины приклеивают в щели эпоксидным клеем.

Ultrasonik kusur dedektörü
Ris.4

Переменный резистор R35 делают из резистора СП5-3. Его верхнюю часть спиливают напильником, регулировочный винт удаляют, а на ползунок эпоксидным клеем прикрепляют диск со шкалой.

Налаживание дефектоскопа начинают с установки устойчивой генерации в преобразователе напряжения, подбирая резистор R39. Далее получают требуемую частоту повторения (120...150 имп/с) импульсов генератора радиоимпульсов, подбирая резистор R2. Амплитуды радиоимпульсов в 70...80 В добиваются подбором динистора V1. После этого подбором конденсаторов С22 и С26 устанавливают пределы изменения при вращении движков резисторов R30 и R35 длительности импульсов одновибраторов задержки (10...25 мкс) и "зоны контроля" (7...45 мкс).

Затем, расположив дефектоскоп на образце из стали или органического стекла с дефектом в виде отверстия диаметром 2,5...3 мм с глубиной 10...50 мм, просверленного перпендикулярно оси ультразвукового пучка, проверяют в контрольной точке КТ1 наличие отраженного от дефекта импульса. Амплитуду 1,8...2 В отраженного от дефекта импульса устанавливают поочередно резисторами R43 и R12. Далее вращают движок резистора R4 до тех пор, пока амплитуды отраженных сигналов от одинаковых дефектов (отверстий) на разной глубине в пределах 7...50 мм не отличались более чем на 20%.

При работе с дефектоскопом сначала смазывают поверхность около шва контактирующей жидкостью (водой, маслом или глицерином). Затем устанавливают диск "Р" резистора R35 на максимальное расстояние и, включив кнопкой S2 дефектоскоп в режим "Поиск", перемещают его вдоль шва. Появление звукового сигнала в телефоне свидетельствует о наличии дефекта в "зоне контроля". Для определения местоположения дефекта нажимают одновременно на кнопки S1 "Оценкам S2 и, перемещая дефектоскоп поперечно шву, наводят положения, при которых световой индикатор Ш "Д" гаснет. Далее дефектоскоп устанавливают посередине между найденными положениями. И наконец, вращая диск "Р" резистора R35, по шкале определяют глубину залегания дефекта по моменту, когда световой индикатор H "Д" гаснет.

Авторы: А. Бондаренко, Н. Бондаренко; Публикация: Н. Большаков, rf.atnn.ru

Diğer makalelere bakın bölüm Göstergeler, dedektörler, metal dedektörleri.

Oku ve yaz yararlı bu makaleye yapılan yorumlar.

<< Geri

En son bilim ve teknoloji haberleri, yeni elektronikler:

Böcekler için hava tuzağı 01.05.2024

Tarım ekonominin kilit sektörlerinden biridir ve haşere kontrolü bu sürecin ayrılmaz bir parçasıdır. Hindistan Tarımsal Araştırma Konseyi-Merkezi Patates Araştırma Enstitüsü'nden (ICAR-CPRI) Shimla'dan bir bilim insanı ekibi, bu soruna yenilikçi bir çözüm buldu: rüzgarla çalışan bir böcek hava tuzağı. Bu cihaz, gerçek zamanlı böcek popülasyonu verileri sağlayarak geleneksel haşere kontrol yöntemlerinin eksikliklerini giderir. Tuzak tamamen rüzgar enerjisiyle çalışıyor, bu da onu güç gerektirmeyen çevre dostu bir çözüm haline getiriyor. Eşsiz tasarımı, hem zararlı hem de faydalı böceklerin izlenmesine olanak tanıyarak herhangi bir tarım alanındaki popülasyona ilişkin eksiksiz bir genel bakış sağlar. Kapil, "Hedef zararlıları doğru zamanda değerlendirerek hem zararlıları hem de hastalıkları kontrol altına almak için gerekli önlemleri alabiliyoruz" diyor ... >>

Uzay enkazının Dünya'nın manyetik alanına yönelik tehdidi 01.05.2024

Gezegenimizi çevreleyen uzay enkazı miktarının arttığını giderek daha sık duyuyoruz. Ancak bu soruna katkıda bulunanlar yalnızca aktif uydular ve uzay araçları değil, aynı zamanda eski misyonlardan kalan kalıntılar da. SpaceX gibi şirketlerin fırlattığı uyduların sayısının artması, yalnızca internetin gelişmesi için fırsatlar yaratmakla kalmıyor, aynı zamanda uzay güvenliğine yönelik ciddi tehditler de yaratıyor. Uzmanlar artık dikkatlerini Dünya'nın manyetik alanı üzerindeki potansiyel çıkarımlara çeviriyor. Harvard-Smithsonian Astrofizik Merkezi'nden Dr. Jonathan McDowell, şirketlerin uydu takımyıldızlarını hızla konuşlandırdığını ve önümüzdeki on yıl içinde uydu sayısının 100'e çıkabileceğini vurguluyor. Bu kozmik uydu armadalarının hızlı gelişimi, Dünya'nın plazma ortamının tehlikeli kalıntılarla kirlenmesine ve manyetosferin istikrarına yönelik bir tehdit oluşmasına yol açabilir. Kullanılmış roketlerden çıkan metal döküntüleri iyonosferi ve manyetosferi bozabilir. Bu sistemlerin her ikisi de atmosferin korunmasında ve sürdürülmesinde önemli bir rol oynamaktadır. ... >>

Dökme maddelerin katılaşması 30.04.2024

Bilim dünyasında pek çok gizem var ve bunlardan biri de dökme malzemelerin tuhaf davranışlarıdır. Katı gibi davranabilirler ama aniden akıcı bir sıvıya dönüşebilirler. Bu olgu birçok araştırmacının dikkatini çekti ve belki de sonunda bu gizemi çözmeye yaklaşıyoruz. Kum saatindeki kumu hayal edin. Genellikle serbestçe akar, ancak bazı durumlarda parçacıkları sıvıdan katıya dönüşerek sıkışıp kalmaya başlar. Bu geçişin ilaç üretiminden inşaata kadar birçok alan için önemli sonuçları var. ABD'li araştırmacılar bu olguyu tanımlamaya ve onu anlamaya daha da yaklaşmaya çalıştılar. Araştırmada bilim insanları, polistiren boncuk torbalarından elde edilen verileri kullanarak laboratuvarda simülasyonlar gerçekleştirdi. Bu kümelerdeki titreşimlerin belirli frekanslara sahip olduğunu buldular; bu da yalnızca belirli türdeki titreşimlerin malzeme içerisinde ilerleyebileceği anlamına geliyor. Kabul edilmiş ... >>

Arşivden rastgele haberler

Çevre dostu piller 22.08.2021

Belki yakında içinde tehlikeli bir zehirli kokteyl bulunan sıradan piller geçmişte kalacak. Hindistan'da bir girişim olan Aloe E-Cell, bileşenlerinden biri aloe vera olan yenilikçi piller yarattı.

Bunlar, dünyanın ilk kesinlikle doğa ve çevre dostu pilleridir. Çalışmalarının prensibi, bitkinin kimyasal enerjisinin elektrik enerjisine dönüştürülmesine dayanmaktadır.

Geliştirme sırasında, geleneksel akülerde bulunan tehlikeli kimyasalların, bitki bazlı bir elektrolit ile değiştirilmesine karar verildi. Sonuç olarak, üretim, sağlığa zararlı cıva ve diğer metallerin kullanımını bırakmayı başardı.

Mucit ekibinin çalışmasının sonucu, toprağı kirletmeyen ve hem insanlar hem de bitkiler ve hayvanlar için güvenli olan pillerdir.

Diğer ilginç haberler:

▪ Şantiyeler için Nvidia AI sistemleri

▪ BlackBerry Playbook tableti

▪ Güneş enerjisi konusunda dünya çapında

▪ Hava durumu ruh halini etkilemez

▪ Kahvenin yerini alan parfümler

Bilim ve teknolojinin haber akışı, yeni elektronik

 

Ücretsiz Teknik Kitaplığın ilginç malzemeleri:

▪ Sitenin Sanat videosu bölümü. Makale seçimi

▪ makale Sürekli Devrim. Popüler ifade

▪ makale Hangi Rus nehri aynı anda iki okyanusa su taşır? ayrıntılı cevap

▪ Makale Kızamık sıradan. Efsaneler, yetiştirme, uygulama yöntemleri

▪ makale Makine türü ne anlama geliyor? Radyo elektroniği ve elektrik mühendisliği ansiklopedisi

▪ makale En basit çekme mekaniği türü. Odak Sırrı

Bu makaleye yorumunuzu bırakın:

Adı:


E-posta isteğe bağlı):


Yorum:





Bu sayfanın tüm dilleri

Ana sayfa | Kütüphane | Makaleler | Site haritası | Site incelemeleri

www.diagram.com.ua

www.diagram.com.ua
2000-2024