Menü English Ukrainian Rusça Ana Sayfa

Hobiler ve profesyoneller için ücretsiz teknik kütüphane Ücretsiz teknik kütüphane


RADYO ELEKTRONİK VE ELEKTRİK MÜHENDİSLİĞİ ANSİKLOPEDİSİ
Ücretsiz kütüphane / Radyo-elektronik ve elektrikli cihazların şemaları

Pilin Peltier elemanları kullanılarak şarj edilmesi. Radyo elektroniği ve elektrik mühendisliği ansiklopedisi

Ücretsiz teknik kütüphane

Radyo elektroniği ve elektrik mühendisliği ansiklopedisi / Güç kaynakları

makale yorumları makale yorumları

Выходное напряжение термоэлектрического генератора на элементах Пельтье зависит от температурных условий и нагрузки. В предлагаемой конструкции режим работы преобразователя этого напряжения в необходимое для зарядки свинцово-кислотной аккумуляторной батареи автоматически поддерживается таким, что генератор всегда отдает максимально возможную мощность. Это позволяет получить от генератора и запасти в батарее максимально возможное количество энергии.

Известно, что для получения максимального количества энергии во внешней цепи необходимо, чтобы сопротивление нагрузки генератора равнялось его внутреннему сопротивлению, а последнее у элемента Пельтье зависит от условий работы. Поскольку обеспечить одинаковые условия нагрева большого числа элементов и отвода от них тепла проблематично, выход заключается в разбиении всего их множества на отдельные группы с примерно одинаковыми характеристиками и тепловыми условиями. Оптимальная нагрузка при этом обеспечивается раздельно для каждой группы. По этому принципу и построено рассматриваемое устройство, состоящее из двух идентичных каналов, работающих на общую нагрузку - заряжаемую аккумуляторную батарею.

Ana teknik parametreler

  • Число каналов преобразования .......2
  • Минимальное напряжение на входе канала, В .......3
  • Максимальное напряжение на входе канала, В .......12
  • Максимальный ток генератора, А .......5
  • Maksimum çıkış voltajı, V......14
  • Частота преобразования, кГц ......80
  • КПД (при входном напряжении 9 В, токе 1 А), %, не менее .......80
  • Ток потребления от батареи в спящем режиме, мА.......0,4

Схема устройства показана на рис. 1. Термоэлектрические генераторы G1 и G2 подключены к входам двух идентичных каналов преобразования. Каждый канал представляет собой повышающий импульсный преобразователь напряжения на накопительном дросселе L1 (L2) и мощном полевом транзисторе VT3 (VT4), управляемый путем широтно-импульсной модуляции. Контролирует работу преобразователей микропроцессор DD1 (ATmega88-20AU). Коды из приложенного к статье файла TERMPR.hex необходимо загрузить в его FLASH-память. Конфигурацию микроконтроллера программируют в соответствии с таблицей, где цветом выделены значения разрядов, отличающиеся от установленных изготовителем микросхемы.

Pili Peltier hücrelerinden şarj etme
Pirinç. 1 (büyütmek için tıklayın)

kategori Komp. kategori Komp.
RSTDISBL 1 CKDIV8 1
DWEN 1 ÇIKIŞ 1
SPIEN 0 SUT1 1
WDTON 0 SUT0 0
ESAVE 1 CKSEL3 0
BODLEVEL2 0 CKSEL2 0
BODLEVEL1 1 CKSEL1 1
BODLEVEL0 0 CKSEL0 0

На рис. 2 приведена диаграмма изменения напряжения на выходе термоэлектрического генератора одного канала в течение рабочего цикла устройства. Масштаб по оси времени не соблюден. Цикл начинается с приостановки работы преобразователя в момент t0, после чего напряжение генератора нарастает до напряжения холостого хода Uxx, которое по окончании переходного процесса микроконтроллер измеряет за время tdüzenlenen. В момент времени t1 микроконтроллер включает преобразователь и в несколько приемов изменяет длительность управляющих им импульсов, каждый раз измеряя напряжение генератора.

После очередного изменения длительности импульсов напряжение генератора попадает в зону с центром вблизи U = 0,5Uxx (в данном случае это момент t4). Это соответствует оптимальной нагрузке на генератор, поэтому преобразователь продолжает работать при установленной длительности импульсов, пока вследствие изменения условий напряжение генератора не выйдет за пределы зоны ΔU. Затем процесс повторяется.

Pili Peltier hücrelerinden şarj etme
Şek. 2

Так происходит зарядка аккумуляторной батареи GB1. По достижении напряжением батареи приблизительно 14 В зарядный ток уменьшается, чтобы не допустить ее перезарядки. Устройство переходит в режим стабилизации напряжения батареи.

Питание микроконтроллера DD1 может происходить как от батареи GB1 через интегральный стабилизатор DA1, так и от термогенераторов G1 и G2 через стабилизаторы тока на транзисторах VT5 и VT6. Благодаря такой организации питания напряжение на зажимах для подключения аккумуляторной батареи имеется даже в ее отсутствие. Достаточно, чтобы работал хотя бы один термогенератор.

Если напряжение обоих термогенераторов опустилось ниже минимального значения, микроконтроллер DD1 переходит в "спящий" режим, предварительно закрыв транзисторы VT7 и VT8 и отключив этим стабилизатор DA1. При этом ток потребления от аккумуляторной батареи (если она подключена) уменьшается до 0,4 мА.

Как только напряжение хотя бы одного генератора становится выше минимального (примерно 3 В), микроконтроллер "пробуждается", включает стабилизатор DA1 и управляет преобразователями, как описано выше. Если напряжение холостого хода генератора превышает напряжение аккумуляторной батареи, то происходит непосредственная зарядка аккумулятора через диод VD7 или VD8 и установить оптимальный режим нагрузки становится невозможно. Отсюда ограничение на максимальное напряжение термогенератора.

Светодиоды HL1-HL3 используются для сигнализации соответственно о включении устройства и работе преобразователей напряжения генераторов G1 и G2. Предусмотрена сигнализация о перегреве термогенераторов - звуковой сигнал подает излучатель звука HA1 и мигает светодиод.

Температура каждого из генераторов контролируется с помощью термовыключателей SK1 и SK2 с температурой срабатывания +120 оС. Наиболее распространенные и дешевые элементы Пельтье могут эксплуатироваться при температуре до +138 оС. Если применить высокотемпературные элементы, то нужно использовать и другие термовыключатели или отказаться от них совсем.

Чертеж печатной платы устройства показан на рис. 3, а размещение элементов на ней - на рис. 4. Многие из необходимых для изготовления устройства деталей можно найти на ненужной материнской плате от компьютера. Например, полевые транзисторы ARM2014N используются в преобразователях напряжения для питания процессора и памяти на платах фирмы ASUS. Хорошо подходят также полевые транзисторы STB70NF3LL. Главное требование, предъявляемое к этим транзисторам, - пороговое напряжение не выше 1,5 В (лучше 1 В). Использование приборов с более высоким пороговым напряжением приводит либо к их чрезмерному нагреву, либо преобразователь вообще не работает, так как транзисторы не открываются имеющимся напряжением.

Pili Peltier hücrelerinden şarj etme
Şek. 3

Pili Peltier hücrelerinden şarj etme
Şek. 4

Дроссели L1 и L2 также изготовлены из найденных на материнской плате. Использованы их магнитопроводы - ферритовые кольца размерами 15x8x6 мм. На них намотаны по 15 витков провода диаметром 1 мм.

Вместо диодов VS80SQ040 и BAS86 могут быть применены другие диоды Шоттки соответственно на 40 В, 10 А и 40 В, 0,1 А.

Программу микроконтроллера можно скачать с ftp://ftp.radio.ru/pub/2014/06/tempr.zip

Авторы: С. Ткачук

Diğer makalelere bakın bölüm Güç kaynakları.

Oku ve yaz yararlı bu makaleye yapılan yorumlar.

<< Geri

En son bilim ve teknoloji haberleri, yeni elektronikler:

Bahçelerdeki çiçekleri inceltmek için makine 02.05.2024

Modern tarımda, bitki bakım süreçlerinin verimliliğini artırmaya yönelik teknolojik ilerleme gelişmektedir. Hasat aşamasını optimize etmek için tasarlanan yenilikçi Florix çiçek seyreltme makinesi İtalya'da tanıtıldı. Bu alet, bahçenin ihtiyaçlarına göre kolayca uyarlanabilmesini sağlayan hareketli kollarla donatılmıştır. Operatör, ince tellerin hızını, traktör kabininden joystick yardımıyla kontrol ederek ayarlayabilmektedir. Bu yaklaşım, çiçek seyreltme işleminin verimliliğini önemli ölçüde artırarak, bahçenin özel koşullarına ve içinde yetişen meyvelerin çeşitliliğine ve türüne göre bireysel ayarlama olanağı sağlar. Florix makinesini çeşitli meyve türleri üzerinde iki yıl boyunca test ettikten sonra sonuçlar çok cesaret vericiydi. Birkaç yıldır Florix makinesini kullanan Filiberto Montanari gibi çiftçiler, çiçeklerin inceltilmesi için gereken zaman ve emekte önemli bir azalma olduğunu bildirdi. ... >>

Gelişmiş Kızılötesi Mikroskop 02.05.2024

Mikroskoplar bilimsel araştırmalarda önemli bir rol oynar ve bilim adamlarının gözle görülmeyen yapıları ve süreçleri derinlemesine incelemesine olanak tanır. Bununla birlikte, çeşitli mikroskopi yöntemlerinin kendi sınırlamaları vardır ve bunların arasında kızılötesi aralığı kullanırken çözünürlüğün sınırlandırılması da vardır. Ancak Tokyo Üniversitesi'ndeki Japon araştırmacıların son başarıları, mikro dünyayı incelemek için yeni ufuklar açıyor. Tokyo Üniversitesi'nden bilim adamları, kızılötesi mikroskopinin yeteneklerinde devrim yaratacak yeni bir mikroskobu tanıttı. Bu gelişmiş cihaz, canlı bakterilerin iç yapılarını nanometre ölçeğinde inanılmaz netlikte görmenizi sağlar. Tipik olarak orta kızılötesi mikroskoplar düşük çözünürlük nedeniyle sınırlıdır, ancak Japon araştırmacıların en son geliştirmeleri bu sınırlamaların üstesinden gelmektedir. Bilim insanlarına göre geliştirilen mikroskop, geleneksel mikroskopların çözünürlüğünden 120 kat daha yüksek olan 30 nanometreye kadar çözünürlükte görüntüler oluşturmaya olanak sağlıyor. ... >>

Böcekler için hava tuzağı 01.05.2024

Tarım ekonominin kilit sektörlerinden biridir ve haşere kontrolü bu sürecin ayrılmaz bir parçasıdır. Hindistan Tarımsal Araştırma Konseyi-Merkezi Patates Araştırma Enstitüsü'nden (ICAR-CPRI) Shimla'dan bir bilim insanı ekibi, bu soruna yenilikçi bir çözüm buldu: rüzgarla çalışan bir böcek hava tuzağı. Bu cihaz, gerçek zamanlı böcek popülasyonu verileri sağlayarak geleneksel haşere kontrol yöntemlerinin eksikliklerini giderir. Tuzak tamamen rüzgar enerjisiyle çalışıyor, bu da onu güç gerektirmeyen çevre dostu bir çözüm haline getiriyor. Eşsiz tasarımı, hem zararlı hem de faydalı böceklerin izlenmesine olanak tanıyarak herhangi bir tarım alanındaki popülasyona ilişkin eksiksiz bir genel bakış sağlar. Kapil, "Hedef zararlıları doğru zamanda değerlendirerek hem zararlıları hem de hastalıkları kontrol altına almak için gerekli önlemleri alabiliyoruz" diyor ... >>

Arşivden rastgele haberler

Toshiba Exceria Pro CompactFlash Bellek Kartları 01.05.2013

Toshiba, CompactFlash formatındaki en hızlı Exceria Pro hafıza kartlarını çağırır. Yeni medya, üst düzey dijital SLR fotoğraf makineleri için tasarlanmıştır. Kartlar, Toshiba'nın NAND flash belleğini kullanır.

Seride 16, 32 ve 64 GB kapasiteli modeller yer alıyor. Hepsi UDMA 7 modunu destekler, CompactFlash 6.1 spesifikasyonuna uygundur ve Video Performans Garantisi Profili 2 (VPG-65) standardının gerekliliklerine uygundur. Bu, yazma hızının 65 MB / s'nin altına düşmemesinin garanti edildiği anlamına gelir (tabii ki uygun donanımın kullanımına bağlı olarak). Aslında, üreticiye göre, okuma modunda kartlar 160 MB / s'ye kadar hızlara ulaşıyor.

Kayıt modunda, 32 ve 64 GB modeller 150 MB / s'ye kadar, daha genç model - 95 MB / s'ye kadar hızlar gösterir.

Diğer ilginç haberler:

▪ Bisiklet stabilizasyon sistemi

▪ 1D yüz kimliğine sahip LeTV X3 kapı kilidi

▪ Böceklerin yok olma tehlikesi

▪ Su kullanarak elektrik üretmenin yeni bir yolu

▪ Almanya için çok fazla güneş

Bilim ve teknolojinin haber akışı, yeni elektronik

 

Ücretsiz Teknik Kitaplığın ilginç malzemeleri:

▪ saha bölümü Gerilim stabilizatörleri. Makale seçimi

▪ Makale Hastane Pediatri. Ders Notları

▪ makale Balıklar duyabilir mi? ayrıntılı cevap

▪ makale Elektrikçi. İş güvenliğine ilişkin standart talimat

▪ makale Mikro hidroelektrik santrallerin inşaatı. Radyo elektroniği ve elektrik mühendisliği ansiklopedisi

▪ makale Üç kartla odaklanın. Odak sırrı

Bu makaleye yorumunuzu bırakın:

Adı:


E-posta isteğe bağlı):


Yorum:





Bu sayfanın tüm dilleri

Ana sayfa | Kütüphane | Makaleler | Site haritası | Site incelemeleri

www.diagram.com.ua

www.diagram.com.ua
2000-2024