Menü English Ukrainian Rusça Ana Sayfa

Hobiler ve profesyoneller için ücretsiz teknik kütüphane Ücretsiz teknik kütüphane


RADYO ELEKTRONİK VE ELEKTRİK MÜHENDİSLİĞİ ANSİKLOPEDİSİ
Ücretsiz kütüphane / Radyo-elektronik ve elektrikli cihazların şemaları

TEA1101 çipine dayalı Ni-Cd ve Ni-MH piller için şarj cihazı. Radyo elektroniği ve elektrik mühendisliği ansiklopedisi

Ücretsiz teknik kütüphane

Radyo elektroniği ve elektrik mühendisliği ansiklopedisi / Şarj cihazları, piller, galvanik hücreler

makale yorumları makale yorumları

В статье описано "интеллектуальное" зарядное устройство зарубежного производства для ускоренной зарядки никель-кадмиевых и никель-металлогидридных аккумуляторов, выполненное на микросхеме ТЕА1101 (Phillips), и его доработка с целью расширения возможностей.

Уже много лет в магазинах и на рынках можно встретить Ni-Cd (никель-кадмиевые) аккумуляторы и батареи, которые при соответствующих условиях эксплуатации выдерживают до 1000 циклов зарядки - разрядки. К недостаткам этих аккумуляторов относится так называемый "эффект памяти". Состоит он в том, что используемый аккумулятор необходимо доводить до состояния полной разрядки (около 1 В на аккумулятор) и только тогда начинать новый цикл зарядки.

Наряду с широко распространенными никель-кадмиевыми аккумуляторами появились и также широко стали применяться относительно новые - Ni-MH (никель-металлогидридные). При тех же габаритах, что и Ni-Cd, эти аккумуляторы имеют почти вдвое большую емкость. Естественно, они также дороги и не лишены недостатков. У Ni-MH аккумуляторов большое внутреннее сопротивление и малые значения пикового тока разрядки, поэтому они не предназначены для питания энергопотребляющих устройств, таких как электродрели, электроотвертки, компрессоры, пылесосы и т. д.

Вследствие неправильных методов зарядки "жизнеспособность" аккумуляторов сокращается до 30 %. Поврежденные аккумуляторы, в свою очередь, при утилизации наносят непоправимый ущерб окружающей среде. Следовательно, правильная и грамотная зарядка аккумуляторов принесет не только принципиальную финансовую экономию, но и окажет положительный экологический эффект.

Самые дешевые и самые простые устройства для зарядки аккумуляторов состоят из трансформатора, выпрямительного диода, токоограничивающего резистора и светодиода. Трансформатор понижает сетевое напряжение 220 В до 4...12 В, которое затем выпрямляет однополупериодный выпрямитель. Резистор ограничивает зарядный ток, а светодиод сигнализирует, что аккумулятор подключен к зарядному устройству. Устройства в основном производства азиатских стран с подобными или идентичными схемами нередко можно встретить в магазинах. Изготовление таких устройств не влечет накладных расходов, однако следует помнить, что они не защищают аккумуляторы от перезарядки. Уже через несколько циклов в аккумуляторах могут появиться необратимые изменения, сокращающие срок их службы.

Во время зарядки необходимо постоянно следить за током, поддерживая его на определенном уровне. Для сокращения времени зарядный ток увеличивают, он может достигать значения, численно равного 100 % емкости аккумулятора. Если при таких условиях не отследить момент полной зарядки, возможно накапливание газов внутри аккумулятора и увеличение давления вплоть до его механического повреждения и выхода из строя.

Степень заряженности можно контролировать, постоянно измеряя температуру корпуса аккумулятора. Этот метод основан на так называемом отрицательном температурном коэффициенте (около -1 мВ/°С) Ni-Cd и Ni-MH аккумуляторов. Зарядку прекращают при соответствующем значении температуры, которое рассчитывают для каждого конкретного случая. Однако этот метод не имеет широкого распространения, принимая во внимание трудности, которые возникают при попытках точного измерения температуры и необходимости ведения точных расчетов.

Есть еще один способ контроля полной зарядки аккумулятора, основанный на обнаружении уменьшения напряжения, в литературе его часто называют метод ΔV [1-6]. Он заключается в отслеживании изменения напряжения на выводах аккумулятора во времени и прекращении зарядки в момент достижения максимума характеристики. Именно этот метод - измерения знака ΔУ - и лежит в основе принципа работы устройства, о котором пойдет речь дальше.

Метод обнаружения максимума является сегодня самым точным способом определения момента окончания зарядки Ni-Cd и Ni-MH аккумуляторов. Напряжение на выводах аккумулятора при постоянном зарядном токе представляет собой монотонно возрастающую функцию. Когда аккумулятор полностью зарядится, он перестает запасать энергию, а возле плюсового электрода начинает накапливаться газ. Это приводит к быстрому повышению температуры и уменьшению напряжения на выводах аккумулятора. Специализированная микросхема (в описываемом зарядном устройстве ТЕА1101) через определенные интервалы измеряет текущее напряжение на заряжаемом аккумуляторе и сравнивает его с предыдущим измерением. Если результат сравнения принимает отрицательное значение, т. е. текущее напряжение меньше предыдущего, и подобное явление повторяется при нескольких десятках измерений - зарядное устройство переходит в режим консервативной зарядки током в пределах 1/20...1/80 от номинальной емкости аккумулятора. Консервативная зарядка не вызывает дальнейшего выделения газа в аккумуляторе и не причиняет ему вреда.

Значение ΔV, которое в состоянии измерить зарядное устройство, зависит от применяемой микросхемы, а точнее, от разрядности встроенного в нее аналого-цифрового преобразователя, преобразующего напряжение в цифровой код. В микросхеме ТЕА1101 число разрядов равно 12, что обеспечивает дискретность в 0,025 % от абсолютного значения напряжения. Этого достаточно для аккумуляторов обоих типов, в то время как, например, микросхема ТЕА1100 имеет всего лишь 10-разрядный АЦП, точности которого хватит только для работы с Ni-Cd аккумуляторами.

Схема "интеллектуального" зарядного устройства показана на рис. 1. Позиционные обозначения всех элементов соответствуют схеме фирмы-изготовителя.

TEA1101 çipinde Ni-Cd ve Ni-MH piller için şarj cihazı

Основа устройства - специализированная микросхема ТЕА1101 (DA1). Напряжение питания микросхемы стабилизирует стабилизатор VT3VD4R6R7 на уровне 8 В, однако она сохраняет работоспособность до напряжения 11,5 В. На вход IB (вывод 5) микросхемы поступает напряжение, пропорциональное зарядному току аккумулятора, с датчика тока - резистора R4, которое сравнивается с заданными значениями тока ускоренной и консервативной зарядки, определяемыми соответственно резисторами R13 и R12. В случае отклонения зарядного тока от заданного значения на выходе аналогового управления АО (вывод 2) возникает управляющее напряжение Если в зарядном устройстве применен линейный регулятор, то это напряжение поступает на регулирующий транзистор, который и осуществляет коррекцию. Однако в микросхеме ТЕА1101 есть встроенный широтно-импульсный модулятор и соответственно выход широтно-импульсного управления PWM (вывод 1).

Импульсное регулирование зарядного тока имеет все преимущества ШИ-регуляторов перед линейными - более высокий КПД, малое рассеивание мощности на регулирующем элементе и т. п. Описываемое зарядное устройство построено именно по принципу ШИ-регулирования, а аналоговый сигнал подан на узел управления VT4R16 - R18 двухцветным светодиодом HL2, по цвету и яркости свечения которого можно приблизительно судить о зарядном токе. Максимально яркое свечение красного светодиода означает, что аккумулятор заряжается ускоренно (транзистор VT4 максимально открыт). Плавный переход от красного через оранжевый цвет к зеленому говорит об уменьшении регулирующего напряжения и прикрывании регулирующего элемента. Яркое зеленое свечение наступает с момента перехода в режим консервативной зарядки.

К сожалению, подобная индикация не позволяет точно определить момент достижения полного заряда. Однако у микросхемы ТЕА1101 предусмотрен специальный выход LED (вывод 15) для управления светодиодом. Этот светодиод (HL1) в разные фазы зарядки ведет себя по-разному, тем самым предоставляя полную информацию о происходящих в зарядном устройстве процессах.Если светодиод не светится или светится очень слабо, возможно пульсирует с малым уровнем яркости, аккумулятор не подключен к зарядному устройству. Постоянно и ярко светит - идет ускоренная зарядка аккумулятора. Ярко мигает - аккумулятор полностью заряжен. Если при первом включении сигнализация такая же, как и при окончании зарядки, аккумулятор, скорее всего, вышел из строя и восстановлению не подлежит. Естественно, во всех этих ситуациях надо обращать внимание еще и на двухцветный светодиод, его свечение говорит о том, идет реально зарядка или нет.

Изначально промышленное устройство было предназначено для зарядки аккумуляторов или батарей, состоящих из двух или трех аккумуляторов емкостью 600...700 мА-ч. Однако это устройство можно подвергнуть несложной доработке, в результате которой его возможности существенно расширяются. Дело в том, что все параметры зарядного устройства можно задать путем подбора соответствующих элементов и питающего напряжения.

Ток режима быстрой зарядки рассчитаем по формуле

lfаst = R8 · Uref/(R4 · R13) = 3,9 · 103 · 1,25/ /(0,27 · 27 · 103) = 0,669А,

где Uref = 1,25 В - образцовое напряжение на выходе Rref (вывод 10).

Ток режима консервативной зарядки

lnorm = 0,1R8 · Uref/(R4 · R12 · P) = 0,1х х З,9 · 103 · 1,25/(0,27 · 6,2 · 103 · 4) = 0,073 А,

где Р - множитель, значение которого определяется подключением вывода 8 (PR) микросхемы ТЕА1101. Когда этот вывод соединен с выводом 6 (Us) микросхемы, Р = 1, если с выводом 16 (GND), - Р = 4, а при неподключенном выводе - Р = 2.

Таким образом, из приведенных соотношений видно, что, если на место R8 подключать резисторы разного сопротивления, можно заряжать аккумуляторы и батареи различной емкости С. В табл. 1 приведены расчетные значения сопротивления R8 и тока режимов быстрой и консервативной зарядки.

TEA1101 çipinde Ni-Cd ve Ni-MH piller için şarj cihazı

Кроме того, чтобы заряжать батареи с большим числом аккумуляторов, следует изменить коэффициент передачи резистивного делителя R14R15 на входе UАС микросхемы (вывод 7). В табл. 2 приведены шесть вариантов батарей, содержащих от одного до шести аккумуляторов. Учитывая, что максимальный ток быстрой зарядки для аккумуляторов емкостью 1000...1200 мА-ч должен быть примерно 1 А, а падение напряжения на регулирующем элементе и двух диодах составит около 2,5 В, необходимое напряжение источника питания при зарядке батарей, состоящих из четырех и более аккумуляторов, выбираем равным 18 В.

TEA1101 çipinde Ni-Cd ve Ni-MH piller için şarj cihazı

Схема доработанного варианта устройства показана на рис. 2.

TEA1101 çipinde Ni-Cd ve Ni-MH piller için şarj cihazı

Оценка минимально необходимого питающего напряжения для обеспечения того или иного зарядного тока проводилась весьма приблизительно, однако последующие эксперименты показали правильность расчетов.

Edebiyat

  1. Nachrustung von Ladenstationen fue NC-Akkuwerzeuge mit dem Ladecontroller TEA1101. - Funk Amateur, 2000, № 2, p. 164-167.
  2. "Интеллектуальное" зарядное устройство для Ni-Cd аккумуляторов. - Радио, 2001 .№ 1.С.72.
  3. Grigoriev B. Pillerin hızlı şarj edilmesi için algoritma. - Radyo, 2001, Sayı 8, s. 38.
  4. Boshboom W. Batteries recharge characteristics under TEA1101 charge management. Report No: NPO/AN9301.
  5. Battery monitor for Ni-Cd and Ni-MH chargers. Philips Semiconductors - preliminary specification. Dec. 1992.
  6. Inteligentna ladowarka akkumulatorow Ni-MH i Ni-Cd. - Radioelectronic Audio Hi-Fi-Video, 1998, № 7-8. s. 21-26.

Автор: В.Голутвин, г.Львов, Украина

Diğer makalelere bakın bölüm Şarj cihazları, piller, galvanik hücreler.

Oku ve yaz yararlı bu makaleye yapılan yorumlar.

<< Geri

En son bilim ve teknoloji haberleri, yeni elektronikler:

Dokunma emülasyonu için suni deri 15.04.2024

Mesafenin giderek yaygınlaştığı modern teknoloji dünyasında, bağlantıyı ve yakınlık duygusunu sürdürmek önemlidir. Saarland Üniversitesi'nden Alman bilim adamlarının suni derideki son gelişmeleri, sanal etkileşimlerde yeni bir dönemi temsil ediyor. Saarland Üniversitesi'nden Alman araştırmacılar, dokunma hissini uzak mesafelere iletebilen ultra ince filmler geliştirdiler. Bu son teknoloji, özellikle sevdiklerinden uzakta kalanlar için sanal iletişim için yeni fırsatlar sunuyor. Araştırmacılar tarafından geliştirilen sadece 50 mikrometre kalınlığındaki ultra ince filmler tekstillere entegre edilebiliyor ve ikinci bir deri gibi giyilebiliyor. Bu filmler anne veya babadan gelen dokunsal sinyalleri tanıyan sensörler ve bu hareketleri bebeğe ileten aktüatörler gibi görev yapar. Ebeveynlerin kumaşa dokunması, basınca tepki veren ve ultra ince filmi deforme eden sensörleri etkinleştirir. Bu ... >>

Petgugu Global kedi kumu 15.04.2024

Evcil hayvanların bakımı, özellikle evinizi temiz tutmak söz konusu olduğunda çoğu zaman zorlayıcı olabilir. Petgugu Global girişiminin, kedi sahiplerinin hayatını kolaylaştıracak ve evlerini mükemmel şekilde temiz ve düzenli tutmalarına yardımcı olacak yeni ve ilginç bir çözümü sunuldu. Startup Petgugu Global, dışkıyı otomatik olarak temizleyerek evinizi temiz ve ferah tutan benzersiz bir kedi tuvaletini tanıttı. Bu yenilikçi cihaz, evcil hayvanınızın tuvalet aktivitesini izleyen ve kullanımdan sonra otomatik olarak temizlemeyi etkinleştiren çeşitli akıllı sensörlerle donatılmıştır. Cihaz, kanalizasyon sistemine bağlanarak, sahibinin müdahalesine gerek kalmadan verimli atık uzaklaştırılmasını sağlar. Ek olarak, tuvaletin büyük bir sifonlu depolama kapasitesi vardır, bu da onu çok kedili evler için ideal kılar. Petgugu kedi kumu kabı, suda çözünebilen kumlarla kullanılmak üzere tasarlanmıştır ve çeşitli ek özellikler sunar. ... >>

Bakımlı erkeklerin çekiciliği 14.04.2024

Kadınların "kötü çocukları" tercih ettiği klişesi uzun zamandır yaygın. Ancak Monash Üniversitesi'nden İngiliz bilim adamlarının son zamanlarda yaptığı araştırmalar bu konuya yeni bir bakış açısı sunuyor. Kadınların, erkeklerin duygusal sorumluluklarına ve başkalarına yardım etme isteklerine nasıl tepki verdiklerini incelediler. Araştırmanın bulguları, erkekleri kadınlar için neyin çekici kıldığına dair anlayışımızı değiştirebilir. Monash Üniversitesi'nden bilim adamlarının yürüttüğü bir araştırma, erkeklerin kadınlara karşı çekiciliği hakkında yeni bulgulara yol açıyor. Deneyde kadınlara, evsiz bir kişiyle karşılaştıklarında verdikleri tepkiler de dahil olmak üzere çeşitli durumlardaki davranışları hakkında kısa öykülerin yer aldığı erkeklerin fotoğrafları gösterildi. Erkeklerden bazıları evsiz adamı görmezden gelirken, diğerleri ona yiyecek almak gibi yardımlarda bulundu. Bir araştırma, empati ve nezaket gösteren erkeklerin, kadınlar için empati ve nezaket gösteren erkeklere göre daha çekici olduğunu ortaya çıkardı. ... >>

Arşivden rastgele haberler

Havadan su 29.06.2021

Gezegenin içme suyu sıkıntısı olan bölgelerinde deniz suyunun tuzdan arındırılması gerekiyor. Bu çok fazla enerji gerektirir ve okyanustan daha uzak bölgelerde böyle bir olasılık yoktur. Sorunun çözümü, atmosferdeki su buharının yoğuşması olabilir. Fikir yeni değil, ancak daha önce var olan "pasif" teknolojiler, doğal sıcaklık değişimlerini hesaba katarak gündüz saatlerinde kullanılamaz. Örneğin çiy toplamak için gün boyunca ısınan folyo kullanılır.

ETH Zürih'ten bilim adamları, kavurucu güneşin altında bile günün her saati su çıkarmanıza izin veren bir teknoloji geliştirdiler. Ayrıca, hiç enerji gerektirmez.

Cihaz, koni şeklinde bir kalkan ve güneş ışınlarını yansıtan ve ısıyı uzaklaştıran özel bir kaplamaya sahip bir cam panelden oluşur. Böylece cihaz ortam sıcaklığının 15 santigrat derece altına kadar soğutulur. Huninin içinde su buharı suya dönüşür. İşlem, kışın kötü yalıtılmış pencerelerde yoğuşmanın nasıl göründüğüne benzer.

Diğer teknolojiler genellikle yoğuşan suyun yüzeyden silinmesini gerektirir - yani başka bir enerji maliyeti. Bu adım olmadan, yoğunlaşan suyun önemli bir kısmı yüzeye yapışacak ve kullanılamaz halde kalacaktır. ETH Zürih'teki araştırmacılar, camın alt tarafına özel olarak geliştirilmiş bir polimerden süper su itici bir kaplama uyguladılar ve yoğunlaşan su toplar halinde toplanmaya ve kendi kendine akmaya (ya da daha doğrusu "zıplamaya") başladı.

Cihaz, üretilen su miktarı açısından "pasif" folyo teknolojilerinden en az iki kat üstün. 10 santimetre çapında bir huniye sahip bir pilot cihaz, günde 4,6 mililitre su üretti. Daha büyük cam daha fazla su demektir. İdeal koşullar altında, bilim adamları saatte metre kare cam yüzey başına 0,53 desilitreye kadar su toplayabilirler.

Zürih Üniversitesi'nde termodinamik profesörü olan Dimos Poulikakos grubundaki doktora öğrencisi Ivan Hechler, "Bu, fiziksel olarak aşılması imkansız olan teorik maksimum değer olan 0,6 desilitre/saat'e yakın" dedi.

Diğer ilginç haberler:

▪ Tembellik yüksek IQ'nun bir işaretidir

▪ Yapay tatlandırıcılar daha fazla yemenizi sağlar

▪ ince havadan yiyecek

▪ F-15 lazer silahlarıyla donatılacak

▪ Nanobotlar insan damarlarına fırlatılacak

Bilim ve teknolojinin haber akışı, yeni elektronik

 

Ücretsiz Teknik Kitaplığın ilginç malzemeleri:

▪ Sitenin radyo amatörlerine yönelik bölümü. Makale seçimi

▪ makale Landau Grigory Adolfovich. Ünlü aforizmalar

▪ makale Sandviç nasıl ortaya çıktı? ayrıntılı cevap

▪ makale Eskimo ilmeği. Seyahat ipuçları

▪ makale fiksatifleri. Basit tarifler ve ipuçları

▪ makale Yüksek kaliteli ses üretimi hakkında gerçek ve peri masalları. Radyo elektroniği ve elektrik mühendisliği ansiklopedisi

Bu makaleye yorumunuzu bırakın:

Adı:


E-posta isteğe bağlı):


Yorum:





Bu sayfanın tüm dilleri

Ana sayfa | Kütüphane | Makaleler | Site haritası | Site incelemeleri

www.diagram.com.ua

www.diagram.com.ua
2000-2024