Menü English Ukrainian Rusça Ana Sayfa

Hobiler ve profesyoneller için ücretsiz teknik kütüphane Ücretsiz teknik kütüphane


RADYO ELEKTRONİK VE ELEKTRİK MÜHENDİSLİĞİ ANSİKLOPEDİSİ
Ücretsiz kütüphane / Radyo-elektronik ve elektrikli cihazların şemaları

Полное описание схемы 200-ваттных блоков питания ПК. Энциклопедия радиоэлектроники и электротехники

Ücretsiz teknik kütüphane

Radyo elektroniği ve elektrik mühendisliği ansiklopedisi / Güç kaynakları

makale yorumları makale yorumları

Приведем полное описание принципиальной схемы для одного из 200-ваттных импульсных блоков питания (PS6220C, производство Тайвань).

200 watt'lık PC güç kaynakları şemasının tam açıklaması
(büyütmek için tıklayın)

Переменное напряжение сети подается через сетевой выключатель PWR SW через сетевой предохранитель F101 4А, помехоподавляющие фильтры, образованные элементами С101, R101, L101, С104, С103, С102 и дроссели L102, L103 на:

  • выходной трехконтактный разъем, к которому может подстыковываться кабель питания дисплея;
  • двухконтактный разъем JP1, ответная часть которого находится на плате.

С разъема JP1 переменное напряжение сети поступает на:

  • мостовую схему выпрямления ВR1 через терморезистор THR1;
  • первичную обмотку пускового трансформатора Т1.

На выходе выпрямителя ВR1 включены сглаживающие емкости фильтра С1, С2. Терморезистор THR ограничивает начальный бросок зарядного тока этих конденсаторов. Переключатель 115 В/230 В SW обеспечивает возможность питания ИБП как от сети 220-240 В, так и от сети 110/127 В.

 Высокооомные резисторы R1, R2, шунтирующие конденсаторы С1, С2 являются симметрирующими (выравнивают напряжения на С1 и С2), а также обеспечивают разрядку этих конденсаторов после выключения ИБП из сети. Результатом работы входных цепей является появление на шине выпрямленного напряжения сети постоянного напряжения Uep, равного +310 В, с некоторыми пульсациями. В данном ИБП используется схема запуска с принудительным (внешним) возбуждением, которая реализована на специальном пусковом трансформаторе Т1, на вторичной обмотке которого после включения ИБП в сеть появляется переменное напряжение с частотой питающей сети. Это напряжение выпрямляется диодами D25, D26, которые образуют со вторичной обмоткой Т1 двухполупериодную схему выпрямления со средней точкой. С30 - сглаживающая емкость фильтра, на которой образуется постоянное напряжение, используемое для питания управляющей микросхемы U4.

 В качестве управляющей микросхемы в данном ИБП традиционно используется ИМС TL494.

Питающее напряжение с конденсатора С30 подается на вывод 12 U4. В результате на выводе 14 U4 появляется выходное напряжение внутреннего опорного источника Uref=-5 В, запускается внутренний генератор пилообразного напряжения микросхемы, а на выводах 8 и 11 появляются управляющие напряжения, которые представляют собой последовательности прямоугольных импульсов с отрицательными передними фронтами, сдвинутые друг относительно друга на половину периода. Элементы С29, R50, подключенные к выводам 5 и 6 микросхемы U4 определяют частоту пилообразного напряжения, вырабатываемого внутренним генератором микросхемы.

Согласующий каскад в данном ИБП выполнен по бестранзисторной схеме с раздельным управлением. Напряжение питания с конденсатора С30 подается в средние точки первичных обмоток управляющих трансформаторов Т2, Т3. Выходные транзисторы ИМС U4 выполняют функции транзисторов согласующего каскада и включены по схеме с ОЭ. Эмиттеры обоих транзисторов (выводы 9 и 10 микросхемы) подключены к "корпусу". Коллекторными нагрузками этих транзисторов являются первичные полуобмотки управляющих трансформаторов Т2, Т3, подключенные к выводам 8, 11 микросхемы U4 (открытые коллекторы выходных транзисторов). Другие половины первичных обмоток Т2, Т3 с подключенными к ним диодами D22, D23 образуют цепи размагничивания сердечников этих трансформаторов.

Трансформаторы T2, Т3 управляют мощными транзисторами полумостового инвертора.

Переключения выходных транзисторов микросхемы вызывают появление импульсных управляющих ЭДС на вторичных обмотках управляющих трансформаторов Т2, Т3. Под действием этих ЭДС силовые транзисторы Q1, Q2 попеременно открываются с регулируемыми паузами ("мертвыми зонами"). Поэтому через первичную обмотку силового импульсного трансформатора Т5 протекает переменный ток в виде пилообразных токовых импульсов. Это объясняется тем, что первичная обмотка Т5 включена в диагональ электрического моста, одно плечо которого образовано транзисторами Q1, Q2, а другое - конденсаторами С1, С2. Поэтому при открывании какого-либо из транзисторов Q1, Q2 первичная обмотка Т5 оказывается подключена к одному из конденсаторов С1 или С2, что и обуславливает протекание через нее тока в течение всего времени, пока открыт транзистор.

Демпферные диоды D1, D2 обеспечивают возврат энергии, запасенной в индуктивности рассеяния первичной обмотки Т5 за время закрытого состояния транзисторов Q1, Q2 обратно в источник (рекуперация).

Цепочка С4, R7, шунтирующая первичную обмотку Т5, способствует подавлению высокочастотных паразитных колебательных процессов, которые возникают в контуре, образованном индуктивностью первичной обмотки Т5 и ее межвитковой емкостью, при закрываниях транзисторов Q1, Q2, когда ток через первичную обмотку резко прекращается.

Конденсатор С3, включенный последовательно с первичной обмоткой Т5, ликвидирует постоянную составляющую тока через первичную обмотку Т5, исключая тем самым нежелательное подмагничивание его сердечника.

Резисторы R3, R4 и R5, R6 образуют базовые делители для мощных транзисторов Q1, Q2 соответственно и обеспечивают оптимальный режим их переключения с точки зрения динамических потерь мощности на этих транзисторах.

Протекание переменного тока через первичную обмотку Т5 обуславливает наличие знакопеременных прямоугольных импульсных ЭДС на вторичных обмотках этого трансформатора.

Силовой трансформатор Т5 имеет три вторичные обмотки, каждая из которых имеет вывод от средней точки.

Обмотка IV обеспечивает получение выходного напряжения +5 В. Диодная сборка SD2 (полумост) образует с обмоткой IV двухполупериодную схему выпрямления со средней точкой (средняя точка обмотки IV заземлена).

Элементы L2, С10, С11, С12 образуют сглаживающий фильтр в канале +5 В. Для подавления паразитных высокочастотных колебательных процессов, возникающих при коммутациях диодов сборки SD2, эти диоды зашунтированы успокаивающими RC-цепочками С8, R10 и С9, R11.

Диоды сборки SD2 представляют собой диоды с барьером Шоттки, чем достигается необходимое быстродействие и повышается КПД выпрямителя.

Обмотка III совместно с обмоткой IV обеспечивает получение выходного напряжения +12 В вместе с диодной сборкой (полумостом) SD1. Эта сборка образует с обмоткой III двухполупериодную схему выпрямления со средней точкой. Однако средняя точка обмотки III не заземлена, а подключена к шине выходного напряжения +5 В. Это даст возможность использовать диоды Шоттки в канале выработки +12 В, т.к. обратное напряжение, прикладываемое к диодам выпрямителя при таком включении, уменьшается до допустимого для диодов Шоттки уровня.

Элементы L1, С6, С7 образуют сглаживающий фильтр в канале +12 В.

Резисторы R9, R12 предназначены для ускорения разрядки выходных конденсаторов шин +5 В и +12 В после выключения ИБП из сети.

RC-цепочка С5, R8 предназначена для подавления колебательных процессов, возникающих в паразитном контуре, образованном индуктивностью обмотки III и ее межвитковой емкостью.

Обмотка II с пятью отводами обеспечивает получение отрицательных выходных напряжений -5 В и -12 В.

Два дискретных диода D3, D4 образуют полумост двухполупериодного выпрямления в канале выработки -12 В, а диоды D5, D6 - в канале -5 В.

Элементы L3, С14 и L2, С12 образуют сглаживающие фильтры для этих каналов.

Обмотка II, также как и обмотка III, зашунтирована успокоительной RC-цепочкой R13, С13.

Средняя точка обмотки II заземлена.

Стабилизация выходных напряжений осуществляются разными способами в разных каналах.

Отрицательные выходные напряжения -5 В и -12 В стабилизируются при помощи линейных интегральных трехвыводных стабилизаторов U4 (типа 7905) и U2 (типа 7912).

Для этого на входы этих стабилизаторов подаются выходные напряжения выпрямителей с конденсаторов С14, С15. На выходных конденсаторах С16, С17 получаются стабилизированные выходные напряжения -12 В и -5 В.

Диоды D7, D9 обеспечивают разрядку выходных конденсаторов С16, С17 через резисторы R14, R15 после выключения ИБП из сети. Иначе эти конденсаторы разряжались бы через схему стабилизаторов, что нежелательно.

Через резисторы R14, R15 разряжаются и конденсаторы С14, С15.

Диоды D5, D10 выполняют защитную функцию в случае пробоя выпрямительных диодов.

Если хотя бы один из этих диодов (D3, D4, D5 или D6) окажется "пробитым", то в отсутствие диодов D5, D10 ко входу интегрального стабилизатора U1 (или U2) прикладывалось бы положительное импульсное напряжение, а через электролитические конденсаторы С14 или С15 протекал бы переменный ток, что привело бы к выходу их из строя.

Наличие диодов D5, D10 в этом случае устраняет возможность возникновения такой ситуации, т.к. ток замыкается через них.

Например, в случае, если "пробит" диод D3, положительная часть периода, когда D3 должен быть закрыт, ток замкнется по цепи: к-а D3 - L3 D7-D5- "корпус".

Стабилизация выходного напряжения +5 В осуществляется методом ШИМ. Для этого к шине выходного напряжения +5 В подключен измерительный резистивный делитель R51, R52. Сигнал, пропорциональный уровню выходного напряжения в канале +5 В, снимается с резистора R51 и подается на инвертирующий вход усилителя ошибки DA3 (вывод 1 управляющей микросхемы). На прямой вход этого усилителя (вывод 2) подается опорный уровень напряжения, снимаемый с резистора R48, входящего в делитель VR1, R49, R48, который подключен к выходу внутреннего опорного источника микросхемы U4 Uref=+5 В. При изменениях уровня напряжения на шине +5 В под воздействием различных дестабилизирующих факторов происходит изменение величины рассогласования (ошибки) между опорным и контролируемым уровнями напряжения на входах усилителя ошибки DA3. В результате ширина (длительность) управляющих импульсов на выводах 8 и 11 микросхемы U4 изменяется таким образом, чтобы вернуть отклонившееся выходное напряжение +5 В к номинальному значению (при уменьшении напряжения на шине +5 В ширина управляющих импульсов увеличивается, а при увеличении этого напряжения - уменьшается).

Устойчивая (без возникновения паразитной генерации) работа всей петли регулирования обеспечивается за счет цепочки частотно-зависимой отрицательной обратной связи, охватывающей усилитель ошибки DA3. Эта цепочка включается между выводами 3 и 2 управляющей микросхемы U4 (R47, С27).

 Выходное напряжение +12 В в данном ИБП не стабилизируется.

Регулировка уровня выходных напряжений в данном ИБП производится только для каналов +5 В и +12 В. Эта регулировка осуществляется за счет изменения уровня опорного напряжения на прямом входе усилителя ошибки DA3 при помощи подстроечного резистора VR1.

При изменении положения движка VR1 в процессе настройки ИБП будет изменяться в некоторых пределах уровень напряжения на шине +5 В, а значит и на шине +12 В, т.к. напряжение с шины +5 В подается в среднюю точку обмотки III.

Комбинированная зашита данного ИБП включает в себя:

  • ограничивающую схему контроля ширины управляющих импульсов;
  • полную схему защиты от КЗ в нагрузках;
  • неполную схему контроля выходного перенапряжения (только на шине +5 В).

Рассмотрим каждую из этих схем.

Ограничивающая схема контроля использует в качестве датчика трансформатор тока Т4, первичная обмотка которого включена последовательно с первичной обмоткой силового импульсного трансформатора Т5.

Резистор R42 является нагрузкой вторичной обмотки Т4, а диоды D20, D21 образуют двухполупериодную схему выпрямления знакопеременного импульсного напряжения, снимаемого с нагрузки R42.

Резисторы R59, R51 образуют делитель. Часть напряжения сглаживается конденсатором С25. Уровень напряжения на этом конденсаторе пропорционально зависит от ширины управляющих импульсов на базах силовых транзисторов Q1, Q2. Этот уровень через резистор R44 подается на инвертирующий вход усилителя ошибки DA4 (вывод 15 микросхемы U4). Прямой вход этого усилителя (вывод 16) заземлен. Диоды D20, D21 включены так, что конденсатор С25 при протекании тока через эти диоды заряжается до отрицательного (относительно общего провода) напряжения.

 В нормальном режиме работы, когда ширина управляющих импульсов не выходит за допустимые пределы, потенциал вывода 15 положителен, благодаря связи этого вывода через резистор R45 с шиной Uref. При чрезмерном увеличении ширины управляющих импульсов по какой-либо причине, отрицательное напряжение на конденсаторе С25 возрастает, и потенциал вывода 15 становится отрицательным. Это приводит к появлению выходного напряжения усилителя ошибки DA4, которое до этого было равно 0 В. Дальнейший рост ширины управляющих импульсов приводит к тому, что управление переключениями ШИМ-компаратора DA2 передается к усилителю DA4, и последующего за этим увеличения ширины управляющих импульсов уже не происходит (режим ограничения), т.к. ширина этих импульсов перестает зависеть от уровня сигнала обратной связи на прямом входе усилителя ошибки DA3.

Схема защиты от КЗ в нагрузках условно может быть разделена на защиту каналов выработки положительных напряжений и защиту каналов выработки отрицательных напряжений, которые схемотехнически реализованы примерно одинаково.

Датчиком схемы защиты от КЗ в нагрузках каналов выработки положительных напряжений (+5 В и +12 В) является диодно-резистивный делитель D11, R17, подключенный между выходными шинами этих каналов. Уровень напряжения на аноде диода D11 является контролируемым сигналом. В нормальном режиме работы, когда напряжения на выходных шинах каналов +5 В и +12 В имеют номинальные величины, потенциал анода диода D11 составляет около +5,8 В, т.к. через делитель-датчик протекает ток с шины +12 В на шину +5 В по цепи: шина +12 В - R17-D11 - шина +5 В.

Контролируемый сигнал с анода D11 подается на резистивный делитель R18, R19. Часть этого напряжения снимается с резистора R19 и подается на прямой вход компаратора 1 микросхемы U3 типа LM339N. На инвертирующий вход этого компаратора подается опорный уровень напряжения с резистора R27 делителя R26, R27, подключенного к выходу опорного источника Uref=+5 В управляющей микросхемы U4. Опорный уровень выбран таким, чтобы при нормальном режиме работы потенциал прямого входа компаратора 1 превышал бы потенциал инверсного входа. Тогда выходной транзистор компаратора 1 закрыт, и схема ИБП нормально функционирует в режиме ШИМ.

 В случае КЗ в нагрузке канала +12 В, например, потенциал анода диода D11 становится равным O В, поэтому потенциал инвертирующего входа компаратора 1 станет выше, чем потенциал прямого входа, и выходной транзистор компаратора откроется. Это вызовет закрывание транзистора Q4, который нормально открыт током базы, протекающим по цепи: шина Upom - R39 - R36 б-э Q4 - "корпус".

Открывание выходного транзистора компаратора 1 подключает резистор R39 к "корпусу", и поэтому транзистор Q4 пассивно закрывается нулевым смещением. Закрывание транзистора Q4 влечет за собой зарядку конденсатора С22, который выполняет функцию звена задержки срабатывания защиты. Задержка необходима из тех соображений, что в процессе выхода ИБП на режим, выходные напряжения на шинах +5 В и +12 В появляются не сразу, а по мере зарядки выходных конденсаторов большой емкости. Опорное же напряжение от источника Uref, напротив, появляется практически сразу же после включения ИБП в сеть. Поэтому в пусковом режиме компаратор 1 переключается, его выходной транзистор открывается, и если бы задерживающий конденсатор С22 отсутствовал, то это привело бы к срабатыванию защиты сразу при включении ИБП в сеть. Однако в схему включен С22, и срабатывание защиты происходит лишь после того как напряжение на нем достигнет уровня, определяемого номиналами резисторов R37, R58 делителя, подключенного к шине Upom и являющегося базовым для транзистора Q5. Когда это произойдет, транзистор Q5 открывается, и резистор R30 оказывается подключен через малое внутреннее сопротивление этого транзистора к "корпусу". Поэтому появляется путь для протекания тока базы транзистора Q6 по цепи: Uref - э-б Q6 - R30 - к-э Q5 "корпус".

Транзистор Q6 открывается этим током до насыщения, в результате чего напряжение Uref=5 В, которым запитан по эмиттеру транзистор Q6, оказывается приложенным через его малое внутреннее сопротивление к выводу 4 управляющей микросхемы U4. Это, как было показано ранее, ведет к останову работы цифрового тракта микросхемы, пропаданию выходных управляющих импульсов и прекращению переключении силовых транзисторов Q1, Q2, т.е. к защитному отключению. КЗ в нагрузке канала +5 В приведет к тому, что потенциал анода диода D11 будет составлять всего около +0,8 В. Поэтому выходной транзистор компаратора (1) окажется открыт, и произойдет защитное отключение.

Аналогичным образом построена защита от КЗ в нагрузках каналов выработки отрицательных напряжений (-5 В и -12 В) на компараторе 2 микросхемы U3. Элементы D12, R20 образуют диоднорезистивный делитель-датчик, подключаемый между выходными шинами каналов выработки отрицательных напряжений. Контролируемым сигналом является потенциал катода диода D12. При КЗ в нагрузке канала -5 В или -12 В, потенциал катода D12 повышается (от -5,8 до 0 В при КЗ в нагрузке канала -12 В и до -0,8 В при КЗ в нагрузке канала -5 В). В любом из этих случаев открывается нормально закрытый выходной транзистор компаратора 2, что и обуславливает срабатывание защиты по приведенному выше механизму. При этом опорный уровень с резистора R27 подается на прямой вход компаратора 2, а потенциал инвертирующего входа определяется номиналами резисторов R22, R21. Эти резисторы образуют двуполярно запитанный делитель (резистор R22 подключен к шине Uref=+5 В, а резистор R21 - к катоду диода D12, потенциал которого в нормальном режиме работы ИБП, как уже отмечалось, составляет -5,8 В). Поэтому потенциал инвертирующего входа компаратора 2 в нормальном режиме работы поддерживается меньшим, чем потенциал прямого входа, и выходной транзистор компаратора будет закрыт.

Защита от выходного перенапряжения на шине +5 В реализована на элементах ZD1, D19, R38, С23. Стабилитрон ZD1 (с пробивным напряжением 5,1 В) подключается к шине выходного напряжения +5 В. Поэтому, пока напряжение на этой шине не превышает +5,1 В, стабилитрон закрыт, а также закрыт транзистор Q5. В случае увеличения напряжения на шине +5 В выше +5,1 В стабилитрон "пробивается", и в базу транзистора Q5 течет отпирающий ток, что приводит к открыванию транзистора Q6 и появлению напряжения Uref=+5 В на выводе 4 управляющей микросхемы U4, т.е. к защитному отключению. Резистор R38 является балластным для стабилитрона ZD1. Конденсатор С23 предотвращает срабатывание защиты при случайных кратковременных выбросах напряжения на шине +5 В (например, в результате установления напряжения после скачкообразного уменьшения тока нагрузки). Диод D19 является развязывающим.

Схема образования сигнала PG в данном ИБП является двухфункциональной и собрана на компараторах (3) и (4) микросхемы U3 и транзисторе Q3.

Схема построена на принципе контроля наличия переменного низкочастотного напряжения на вторичной обмотке пускового трансформатора Т1, которое действует на этой обмотке лишь при наличии питающего напряжения на первичной обмотке Т1, т.е. пока ИБП включен в питающую сеть.

Практически сразу после включения ИБП в питающую сеть появляется вспомогательное напряжение Upom на конденсаторе С30, которым запитывается управляющая микросхема U4 и вспомогательная микросхема U3. Кроме того, переменное напряжение со вторичной обмотки пускового трансформатора Т1 через диод D13 и токоограничивающий резистор R23 заряжает конденсатор С19. Напряжением с С19 запитывается резистивный делитель R24, R25. С резистора R25 часть этого напряжения подается на прямой вход компаратора 3, что приводит к закрыванию его выходного транзистора. Появляющееся сразу вслед за этим выходное напряжение внутреннего опорного источника микросхемы U4 Uref=+5 В запитывает делитель R26, R27. Поэтому на инвертирующий вход компаратора 3 подается опорный уровень с резистора R27. Однако этот уровень выбран меньшим, чем уровень на прямом входе, и поэтому выходной транзистор компаратора 3 остается в закрытом состоянии. Поэтому начинается процесс зарядки задерживающей емкости С20 по цепи: Upom - R39 - R30 - С20 - "корпус".

Растущее по мере зарядки конденсатора С20 напряжение подается на инверсный вход 4 микросхемы U3. На прямой вход этого компаратора подается напряжение с резистора R32 делителя R31, R32, подключенного к шине Upom. Пока напряжение на заряжающемся конденсаторе С20 не превышает напряжения на резисторе R32, выходной транзистор компаратора 4 закрыт. Поэтому в базу транзистора Q3 протекает открывающий ток по цепи: Upom - R33 - R34 - б-э Q3 - "корпус".

Транзистор Q3 открыт до насыщения, а сигнал PG, снимаемый с его коллектора, имеет пассивный низкий уровень и запрещает запуск процессора. За это время, в течение которого уровень напряжения на конденсаторе С20 достигает уровня на резисторе R32, ИБП успевает надежно выйти в номинапьныи режим работы, т.е. все его выходные напряжения появляются в полном объеме.

Как только напряжение на С20 превысит напряжение, снимаемое с R32, компаратор 4 переключится, и его выходной транзистор откроется. Это повлечет за собой закрывание транзистора Q3, и сигнал PG, снимаемый с его коллекторной нагрузки R35, становится активным (Н-уровня) и разрешает запуск процессора.

При выключении ИБП из сети на вторичной обмотке пускового трансформатора Т1 переменное напряжение исчезает. Поэтому напряжение на конденсаторе С19 быстро уменьшается из-за малой емкости последнего (1мкф).

Как только падение напряжения на резисторе R25 станет меньше, чем на резисторе R27, компаратор 3 переключится, и его выходной транзистор откроется. Это повлечет за собой защитное отключение выходных напряжений управляющей микросхемы U4, т.к. откроется транзистор Q4. Кроме того, через открытый выходной транзистор компаратора 3 начнется процесс ускоренной разрядки конденсатора С20 по цепи: (+)С20 - R61 - D14 - к-э выходного транзистора компаратора 3 - "корпус". Как только уровень напряжения на С20 станет меньше, чем уровень напряжения на R32, компаратор 4 переключится, и его выходной транзистор закроется. Это повлечет за собой открывание транзистора Q3 и переход сигнала PG в неактивный низкий уровень до того, как начнут недопустимо уменьшаться напряжения на выходных шинах ИБП. Это приведет к инициализации сигнала системного сброса компьютера и к исходному состоянию всей цифровой части компьютера.

Оба компаратора 3 и 4 схемы выработки сигнала PG охвачены положительными обратными связями с помощью резисторов R28 и R60 соответственно, что ускоряет их переключение.

Плавный выход на режим в данном ИБП традиционно обеспечивается при помощи формирующей цепочки С24, R41, подключенной к выводу 4 управляющей микросхемы U4. Остаточное напряжение на выводе 4, определяющее максимально возможную длительность выходных импульсов, задается делителем R49, R41.

Питание двигателя вентилятора осуществляется напряжением с конденсатора С14 в канале выработки напряжения -12 В через дополнительный развязывающий Г-образный фильтр R16, С15.

Авторы: Головков А. В., Любицкий В.Б.

Diğer makalelere bakın bölüm Güç kaynakları.

Oku ve yaz yararlı bu makaleye yapılan yorumlar.

<< Geri

En son bilim ve teknoloji haberleri, yeni elektronikler:

Bahçelerdeki çiçekleri inceltmek için makine 02.05.2024

Modern tarımda, bitki bakım süreçlerinin verimliliğini artırmaya yönelik teknolojik ilerleme gelişmektedir. Hasat aşamasını optimize etmek için tasarlanan yenilikçi Florix çiçek seyreltme makinesi İtalya'da tanıtıldı. Bu alet, bahçenin ihtiyaçlarına göre kolayca uyarlanabilmesini sağlayan hareketli kollarla donatılmıştır. Operatör, ince tellerin hızını, traktör kabininden joystick yardımıyla kontrol ederek ayarlayabilmektedir. Bu yaklaşım, çiçek seyreltme işleminin verimliliğini önemli ölçüde artırarak, bahçenin özel koşullarına ve içinde yetişen meyvelerin çeşitliliğine ve türüne göre bireysel ayarlama olanağı sağlar. Florix makinesini çeşitli meyve türleri üzerinde iki yıl boyunca test ettikten sonra sonuçlar çok cesaret vericiydi. Birkaç yıldır Florix makinesini kullanan Filiberto Montanari gibi çiftçiler, çiçeklerin inceltilmesi için gereken zaman ve emekte önemli bir azalma olduğunu bildirdi. ... >>

Gelişmiş Kızılötesi Mikroskop 02.05.2024

Mikroskoplar bilimsel araştırmalarda önemli bir rol oynar ve bilim adamlarının gözle görülmeyen yapıları ve süreçleri derinlemesine incelemesine olanak tanır. Bununla birlikte, çeşitli mikroskopi yöntemlerinin kendi sınırlamaları vardır ve bunların arasında kızılötesi aralığı kullanırken çözünürlüğün sınırlandırılması da vardır. Ancak Tokyo Üniversitesi'ndeki Japon araştırmacıların son başarıları, mikro dünyayı incelemek için yeni ufuklar açıyor. Tokyo Üniversitesi'nden bilim adamları, kızılötesi mikroskopinin yeteneklerinde devrim yaratacak yeni bir mikroskobu tanıttı. Bu gelişmiş cihaz, canlı bakterilerin iç yapılarını nanometre ölçeğinde inanılmaz netlikte görmenizi sağlar. Tipik olarak orta kızılötesi mikroskoplar düşük çözünürlük nedeniyle sınırlıdır, ancak Japon araştırmacıların en son geliştirmeleri bu sınırlamaların üstesinden gelmektedir. Bilim insanlarına göre geliştirilen mikroskop, geleneksel mikroskopların çözünürlüğünden 120 kat daha yüksek olan 30 nanometreye kadar çözünürlükte görüntüler oluşturmaya olanak sağlıyor. ... >>

Böcekler için hava tuzağı 01.05.2024

Tarım ekonominin kilit sektörlerinden biridir ve haşere kontrolü bu sürecin ayrılmaz bir parçasıdır. Hindistan Tarımsal Araştırma Konseyi-Merkezi Patates Araştırma Enstitüsü'nden (ICAR-CPRI) Shimla'dan bir bilim insanı ekibi, bu soruna yenilikçi bir çözüm buldu: rüzgarla çalışan bir böcek hava tuzağı. Bu cihaz, gerçek zamanlı böcek popülasyonu verileri sağlayarak geleneksel haşere kontrol yöntemlerinin eksikliklerini giderir. Tuzak tamamen rüzgar enerjisiyle çalışıyor, bu da onu güç gerektirmeyen çevre dostu bir çözüm haline getiriyor. Eşsiz tasarımı, hem zararlı hem de faydalı böceklerin izlenmesine olanak tanıyarak herhangi bir tarım alanındaki popülasyona ilişkin eksiksiz bir genel bakış sağlar. Kapil, "Hedef zararlıları doğru zamanda değerlendirerek hem zararlıları hem de hastalıkları kontrol altına almak için gerekli önlemleri alabiliyoruz" diyor ... >>

Arşivden rastgele haberler

PANASONIC'ten yerleşik DVD kaydedicili CRT TV 19.09.2003

Ekim ayında Matsushita Electric Industrial (Panasonic), yerleşik DVD kaydedicili 21 inç CRT TV'yi piyasaya sürdü.

TN-21DR1'in maliyeti yaklaşık 1000$ olacaktır. TV'de aynı anda iki programı kaydetmek için iki analog tuner bulunur. Kayıt hızı DVD-R/RAM - 4x. Dört kalite modunda boş disklere kayıt yapmak mümkündür.

TH-21 DR1, kayda ek olarak, CD-R/RW disklerine kaydedilmiş DVD Video, Ses CD'si, Video CD'si ve MPXNUMX dosyalarını oynatabilir. TV kanallarında ilgi çekici bir şey yoksa ve izlenecek ve dinlenecek bir şey yoksa, dahili AM / FM tuneri kullanabilirsiniz.

Harici cihazları bağlamak için iki S-Video, iki kompozit, bir analog ve bir optik giriş sağlanmıştır.

Diğer ilginç haberler:

▪ QNAP TVS-882ST2 NAS

▪ El yazısı mektubun kaderi

▪ Yumuşak elektronikler çok katmanlı hale geldi

▪ Esnek ekranlar akıllı telefonları kırılmaz kılıyor

▪ TI Hercules RM57Lx ve TMS570LCx mikrodenetleyiciler

Bilim ve teknolojinin haber akışı, yeni elektronik

 

Ücretsiz Teknik Kitaplığın ilginç malzemeleri:

▪ sitenin bölümü Akım, voltaj, güç regülatörleri. Makale seçimi

▪ makale Robot Orion. Bir modelci için ipuçları

▪ makale İlk heykel ne zaman yapıldı? ayrıntılı cevap

▪ makale Elektroteknik olmayan personel. İş güvenliğine ilişkin standart talimat

▪ makale Küçük boyutlu iki elementli Sigma-Yagi. Radyo elektroniği ve elektrik mühendisliği ansiklopedisi

▪ makale Şema, Siemens S10, S11 kablosunun pin çıkışı (pin çıkışı), pin çıkışı. Radyo elektroniği ve elektrik mühendisliği ansiklopedisi

Bu makaleye yorumunuzu bırakın:

Adı:


E-posta isteğe bağlı):


Yorum:





Bu sayfanın tüm dilleri

Ana sayfa | Kütüphane | Makaleler | Site haritası | Site incelemeleri

www.diagram.com.ua

www.diagram.com.ua
2000-2024