Menü English Ukrainian Rusça Ana Sayfa

Hobiler ve profesyoneller için ücretsiz teknik kütüphane Ücretsiz teknik kütüphane


RADYO ELEKTRONİK VE ELEKTRİK MÜHENDİSLİĞİ ANSİKLOPEDİSİ
Ücretsiz kütüphane / Radyo-elektronik ve elektrikli cihazların şemaları

Uke.max ölçüm cihazının taşınabilir versiyonu. Radyo elektroniği ve elektrik mühendisliği ansiklopedisi

Ücretsiz teknik kütüphane

Radyo elektroniği ve elektrik mühendisliği ansiklopedisi / Ölçüm teknolojisi

makale yorumları makale yorumları

В [1] был описан измеритель Uкэ.макс для подбора транзисторов мощных УМЗЧ. В данной статье приводится описание прибора аналогичного назначения, но новый прибор не привязан к сетевому напряжению, его можно взять с собой на радиорынок для проверки транзисторов. А это, согласитесь, очень важное преимущество нового измерителя.

Прибор, о котором пойдет речь, был изготовлен еще до появления статьи [1]. Измеритель [1] служит мне и по сей день. Нередко приходится проверять транзисторы по параметру Uкэ.макс после стандартной проверки обычным стрелочным омметром М41070/1. Кстати, этот омметр лучше подходит при проверке транзисторов, чем популярные цифровые омметры серии 830 и т.д. Но реальные цифры можно получить лишь в условиях, близких к рабочим режимам транзисторов. Чтобы испытуемый транзистор не вышел из строя, необходимо позаботиться о построении системы, близкой к неразрушающему контролю. И, конечно, прибор должен быть переносным. От гальванических элементов решено было отказаться, их заменил аккумулятор.

Экспериментируя с различными схемами преобразователей напряжения, я пришел к схеме рис.1.

Sayacın taşınabilir versiyonu Uke.max
(büyütmek için tıklayın)

Прибор получился малогабаритным - масса прибора в основном определялась массами аккумулятора и корпуса. В нем удалось получить выходное постоянное напряжение больше 4 кВ! Поэтому в схему введен резистор R6, ограничивающий сверху диапазон регулирования высокого напряжения. Такое высокое напряжение, кстати, позволяет проверять конденсаторы и диоды.

Для проверки транзисторы включают параллельно регулируемому источнику напряжения. Благодаря резистору R15 (R16), при замыкании нагрузки схема работает в режиме генератора стабильного тока. Этим защищается как схема, так и проверяемые транзисторы. Как показала практика измерений прибором [1], в подавляющем большинстве случаев нет необходимости включать резистор между базой и эмиттером испытуемого транзистора. Если транзистор исправен при закороченной базе с эмиттером, то его без всяких сомнений можно устанавливать в аппаратуру (проверено многолетним опытом). По этой причине в схеме рис.1 выводы базы и эмиттера транзисторов закорочены монтажными перемычками уже в разъемах. Но желающие могут включить переменные резисторы, как это сделано в приборе [1].

Чтобы не коммутировать тип проводимости (n-p-n или p-n-p), в разъемах предусмотрены отдельные контакты для транзисторов различной проводимости. Этим практически исключается подключение напряжения обратной полярности к испытуемому транзистору (это сразу выводит транзистор из строя). В данном приборе имеется вольтметр с "растянутой" шкалой для индикации состояния аккумулятора. Вольтметр выполнен на элементах VD3, VD4, R11 и стрелочном измерителе РА2.

Этим же измерителем осуществляется и контроль исправности измеряемых транзисторов. В показанном на схеме положении выключателя SA2 производят измерение тока через транзистор. При замыкании контактов SA2 измеритель РА2 подключается через элементы R11, VD3, VD4 к положительной клемме аккумулятора. "Растяжка" шкалы осуществляется стабилитроном VD4 и диодом VD3. Этим повышается точность индикатора состояния аккумулятора, а значит, можно применять дешевую измерительную головку.

Для того чтобы снизить вероятность выхода из строя измерителя РА2 при дефектных транзисторах или случайных замыканиях выводов коллектор-эмиттер, в схеме установлены элементы VD5 и R10. "Изюминкой" схемы является электронный киловольтметр, выполненный на сборке VT3 типа КПС104 и измерителе РА1. Традиционное исполнение аналогичных устройств предусматривает стрелочный измеритель тока (обычно на 50 или 100 мкА) и добавочный резистор. Для измерения напряжения до 3 кВ измерителем на 100 мкА необходим добавочный резистор сопротивлением 30 МОм.

Высокое входное сопротивление полевого транзистора VT3.1 позволяет установить резистор R8 сопротивлением 100 МОм. Это позволяет включить дешевый измеритель РА1 от магнитофона на 500 мкА. При R8=100 МОм и напряжении на выходе умножителя напряжения 3 кВ ток потребления составляет всего 30 мкА. Если в распоряжении пользователя есть более чувствительный измеритель, то R8 можно увеличить даже до 500 МОм, что позволит улучшить массогабаритные показатели прибора в целом.

Несколько необычным в рассматриваемом приборе является регулирование выходного напряжения, производимое изменением напряжения на коллекторе транзистора VT1 потенциометром R5. Такое включение гарантирует регулировку Uкэ от нулевого до максимального значения, последнее ограничивается резистором R6.

Другие методы не гарантируют устойчивую работу схемы при малых Uкэ.

Генератор выполнен на элементах DD1.1, DD1.2 по хорошо зарекомендовавшей себя схеме с диодами, благодаря которым имеется возможность раздельно установить длительность импульса и длительность паузы. Частота импульсов определяется емкостью конденсатора С1. В данной схеме она равна 20 кГц. Увеличение частоты имеет смысл при секционировании трансформатора Т1 (в данном случае он выполнен несекционированным).

Генератор развязан двумя буферными элементами DD1.3, DD1.4. В качестве усилителя тока использован транзистор VT1 с большим коэффициентом передачи тока базы (КТ3102Е). В оконечном каскаде VT2 хорошие результаты дает транзистор КТ903А (хотя использовались и транзисторы КТ801Б, КТ815Б, КТ940А, КТ805А, КТ819Г и др.). Со вторичной обмотки трансформатора Т1 напряжение подается на умножитель напряжения (элементы VD13...VD20 и С5...С12).

В приборе предусмотрены клеммы для подключения зарядного устройства. Для зарядки аккумулятора переключатель SA1 переводят в положение, указанное на рис.1. Диод VD12 запрещает подачу напряжения обратной полярности на аккумулятор. Для индикации включения прибора служит светодиод VD21. Таким образом, переключатель SA1 является одновременно и выключателем питания.

Детали. Вместо микросхемы К561ЛЕ5 подойдет и К561ЛА7. Вместо транзистора КТ3102Е можно использовать КТ3102Д или КТ342. О транзисторе VT2 уже было сказано, но добавлю, что если вам не нужно напряжение 3 кВ, то ассортимент применяемых транзисторов становится весьма широким - подойдут и транзисторы средней мощности. Но в этом случае вы не сможете проверить телевизионные транзисторы типов КТ838А, КТ872А и подобные.

Для проверки большинства высоковольтных транзисторов вполне достаточно напряжения 1,5-2 кВ.

В качестве VT3 можно использовать любые одиночные полевые транзисторы, но сборка все же удобнее. Можно использовать КПС104 с любым буквенным индексом.

Вместо диодов КД521А(Б) подойдут КД522. Диоды Д220 и Д223 можно заменить любыми аналогичными, в том числе и КД521, КД522. Вместо последовательно соединенных диодов VD6...VD9 первоначально устанавливались стабилитроны, но у них большие утечки, что вносило погрешности при измерениях больших напряжений. Высоковольтные диоды типа 1N4937 (600 В; 0,1 мкс) вполне заменимы отечественными типов КД226(Г-Е), КД243(ДЖ), КД247(Д-Ж). Стабилитрон VD4 подбирают при наладке (см. ниже).

Выключатели SA2, SA3 типа МТ-1 или любые другие малогабаритные. Переключатель SA3 типа МТ-3. Высоковольтные резисторы R8, R15, R16 типа КЭВ-1. Остальные резисторы типов МЛТ и МТ.

Конденсаторы использованы следующих типов: КД (С1), К73-17 (С3...С12, С14), К50-16 (С2, С13). Измеритель РА2 типа М476/3 (100 мкА), тип РА1 указать не могу, я взял его из старого магнитофона, он удобен тем, что имеет большую шкалу (56х56 мм).

Импульсный трансформатор Т1 намотан на ферритовом кольце типоразмера К45х23х8. Марка феррита М2000НМ1.

Выбор такого типоразмера обоснован тем, что наматывать обмотки нужно долго и аккуратно. Первой наматывают вторичную обмотку - 1000 витков провода ПЭЛШО-0,25. Поверх нее наматывают первичную обмотку - 27 витков такого же провода, но сложенного в 7 жил.

Конструкция. Измеритель размещен в корпусе из полистирола размером 215х148х55 мм (готовый от какого-то аппарата). Лицевая панель изготовлена из пластика белого цвета, на него легко наносить надписи черной шариковой ручкой, которые затем можно заклеить скотчем. В корпус входит также аккумулятор "восточного" производства (6 В, 4 А.ч, 640 циклов), его размеры 107х69х47 мм. У такого аккумулятора невелик саморазряд, поэтому можно месяцами его не заряжать.

Недавно в схему прибора было внесено изменение - переключатель SA2 заменен двухсекционным. Вторая секция переключателя включена согласно схеме рис.2. Это позволяет более плавно регулировать Uкэ в диапазоне 0...600 В и устранить зашкаливание индикатора РА2 в диапазоне 3 кВ.

Прибор выполнен поблочно. Преобразователь с оконечным транзистором VT2 и трансформатором Т1 размещен на печатной плате (рис.3).

Sayacın taşınabilir versiyonu Uke.max

Умножитель напряжения собран на отдельной печатной плате (рис.4).

Sayacın taşınabilir versiyonu Uke.max

Электронный вольтметр собран на третьей печатной плате (рис.5). Остальные элементы схемы припаяны к закрепленным деталям на корпусе прибора. Транзистор VT2 установлен без теплоотвода.

Sayacın taşınabilir versiyonu Uke.max

Наладка. Необходимо тщательно проверить все применяемые радиокомпоненты. В первую очередь необходимо откалибровать шкалы киловольтметра РА1. Этих шкал две (600 В и 3 кВ). Важно аккуратно разобрать микроамперметр, не повредив головку. Для этого острым скальпелем по хорошо видимому соединительному спаю половинок корпуса сделать надрезы. Шкалу изготавливают из белой бумаги с помощью циркуля и ножниц.

О делителе напряжения R10 и R11. Вначале нужно подобрать R10, так как R11 больше влияет на показания вольтметра.

Калибровать можно этой же схемой (от точки "Б"), применив измеритель со шкалой 50 мкА и резистор 100 МОм. Замкнув контакты выключателя SA3, подбираем резистор R10 для диапазона 3 кВ, лишь после этого подбираем резистор R11 для диапазона 600 В.

Наладку преобразователя напряжения начинаем с генератора. Конденсатором С1 выбираем частоту в пределах 20-30 кГц.

Вместо резисторов R1, R2 нужно первоначально впаять потенциометры и установить скважность, равную 2. Движок резистора R5 должен быть при этом в крайнем левом положении (по схеме).

Затем начинаем перемещать этот движок, при этом напряжение в точке "Б" должно нарастать. Если это не так, необходимо тщательно проверить монтаж и детали. При этих работах устройство нужно питать от стабилизатора напряжения с ограничением тока до 1 А. В противном случае легко вывести из строя транзистор VT2. Установим напряжение в точке "Б" равным 200 В. После этого подбираем конденсатор С1 по максимальному увеличению этого напряжения. Затем подбираем резисторы R1, R2 с той же целью. После этого потенциометром R5 устанавливаем максимальное значение напряжения в точке "Б". При необходимости можно уменьшить сопротивление резистора R6. Уменьшать сопротивление резистора R3 не следует (можно вывести из строя микросхему).

О "растяжке" шкалы вольтметра на РА2. Цепь из элементов VD3, VD4, R11 и РА2 подключаем к регулируемому стабилизированному блоку питания. Зона контроля напряжений этой схемой находится в пределах 5...8 В. Таким образом, имеется возможность следить за состоянием аккумулятора как во время эксплуатации, так и во время зарядки. Установив выходное напряжение блока питания 5 В, добиваемся отклонения стрелки измерителя РА2. Это достигается подбором стабилитрона VD4. После этого подбираем резистор R8 для максимального отклонения при напряжении 8 В.

Модернизация прибора заключается в секционировании трансформатора Т1 для повышения КПД схемы. Можно также установить в качестве измерителя РА1 головку на 50 мкА, что позволит уменьшить ток, снимаемый с высоковольтного выпрямителя, а следовательно, мощность схемы.

Referanslar:

  1. Зызюк А.Г. Подбор транзисторов для мощных УМЗЧ//Радіоаматор. -2001. №6. -С.7.

Yazar: A.G. Zyzyuk

Diğer makalelere bakın bölüm Ölçüm teknolojisi.

Oku ve yaz yararlı bu makaleye yapılan yorumlar.

<< Geri

En son bilim ve teknoloji haberleri, yeni elektronikler:

Optik Sinyalleri Kontrol Etmenin ve Yönetmenin Yeni Bir Yolu 05.05.2024

Modern bilim ve teknoloji dünyası hızla gelişiyor ve her gün bize çeşitli alanlarda yeni ufuklar açan yeni yöntem ve teknolojiler ortaya çıkıyor. Bu tür yeniliklerden biri, Alman bilim adamlarının, fotonik alanında önemli ilerlemelere yol açabilecek optik sinyalleri kontrol etmenin yeni bir yolunu geliştirmesidir. Son araştırmalar, Alman bilim adamlarının erimiş silika dalga kılavuzunun içinde ayarlanabilir bir dalga plakası oluşturmasına olanak sağladı. Sıvı kristal katmanın kullanımına dayanan bu yöntem, bir dalga kılavuzundan geçen ışığın polarizasyonunu etkili bir şekilde değiştirmeye olanak tanır. Bu teknolojik atılım, büyük hacimli verileri işleyebilen kompakt ve verimli fotonik cihazların geliştirilmesi için yeni umutlar açıyor. Yeni yöntemle sağlanan elektro-optik polarizasyon kontrolü, yeni bir entegre fotonik cihaz sınıfının temelini oluşturabilir. Bu, büyük fırsatların önünü açıyor ... >>

Primium Seneca klavye 05.05.2024

Klavyeler günlük bilgisayar işlerimizin ayrılmaz bir parçasıdır. Ancak kullanıcıların karşılaştığı temel sorunlardan biri, özellikle premium modellerde gürültüdür. Ancak Norbauer & Co'nun yeni Seneca klavyesiyle bu durum değişebilir. Seneca sadece bir klavye değil, ideal cihazı yaratmak için beş yıllık geliştirme çalışmasının sonucudur. Bu klavyenin akustik özelliklerinden mekanik özelliklerine kadar her yönü dikkatle düşünülmüş ve dengelenmiştir. Seneca'nın en önemli özelliklerinden biri, birçok klavyede yaygın olan gürültü sorununu çözen sessiz dengeleyicileridir. Ayrıca klavye çeşitli tuş genişliklerini destekleyerek her kullanıcı için kolaylık sağlar. Seneca henüz satışa sunulmasa da yaz sonunda piyasaya sürülmesi planlanıyor. Norbauer & Co'nun Seneca'sı klavye tasarımında yeni standartları temsil ediyor. O ... >>

Dünyanın en yüksek astronomi gözlemevi açıldı 04.05.2024

Uzayı ve onun gizemlerini keşfetmek, dünyanın her yerindeki gökbilimcilerin dikkatini çeken bir görevdir. Şehrin ışık kirliliğinden uzak, yüksek dağların temiz havasında yıldızlar ve gezegenler sırlarını daha net bir şekilde açığa çıkarıyor. Dünyanın en yüksek astronomi gözlemevi olan Tokyo Üniversitesi Atacama Gözlemevi'nin açılışıyla astronomi tarihinde yeni bir sayfa açılıyor. Deniz seviyesinden 5640 metre yükseklikte bulunan Atacama Gözlemevi, uzay araştırmalarında gökbilimcilere yeni fırsatlar sunuyor. Bu site, yer tabanlı bir teleskop için en yüksek konum haline geldi ve araştırmacılara Evrendeki kızılötesi dalgaları incelemek için benzersiz bir araç sağladı. Yüksek rakımlı konum daha açık gökyüzü ve atmosferden daha az müdahale sağlasa da, yüksek bir dağa gözlemevi inşa etmek çok büyük zorluklar ve zorluklar doğurur. Ancak zorluklara rağmen yeni gözlemevi gökbilimcilere geniş araştırma olanakları sunuyor. ... >>

Arşivden rastgele haberler

Hücresel operatörler olmadan çalışan cep telefonu 28.06.2019

Oppo, hücresel ağları kullanmadan arama yapmanızı sağlayan MeshTalk teknolojisini geliştirmiştir. Fikir, Oppo akıllı telefon sahipleri arasında merkezi olmayan veri alışverişini ve mobil operatörlerden ve uluslararası dolaşım da dahil olmak üzere hizmet koşullarından neredeyse tamamen bağımsız olmayı ima ediyor.

MeshTalk protokolü, merkezi olmayan bir veri iletim sistemidir. The Verge kaynağına göre, hücresel ağların dışında çalışmaya ek olarak teknolojinin önemli bir özelliği de sinyal iletim aralığıdır - kullanıcılar üç kilometreye kadar uzakta olabilir. MeshTalk ayrıca çalışmasında Bluetooth ve Wi-Fi modüllerini kullanmaz. Teknoloji açıklaması, sinyalin frekansını ve dağıtımına müdahale eden nesnelerin listesini sağlamıyor, ancak Oppo'nun kendisine göre, Haziran 2019 itibariyle MeshTalk, diğer benzer teknolojilere kıyasla daha uzun bir mesafede çalışıyor.

Aslında MeshTalk, baz istasyonları, sunucular ve diğer ara cihazlar olmadan bir P2P (eşler arası) veri alışverişi ağıdır. Akıllı telefonları bir telsizin modern bir analoguna dönüştürerek, muhataplara maksimum konuşma gizliliği sağlar.

Donanım teknolojisi, akıllı telefonun anakartında bulunan ayrı bir çip şeklinde uygulanır. Modül, bir sinyal iletirken minimum enerji tüketir ve etkinleştirildiğinde, akıllı telefon bekleme modunda üç güne (72 saat) kadar dayanabilir. Bu durumda gadget, hücresel ağların kullanımında olduğu gibi baz istasyonları aramak için enerji harcamaz.

Diğer ilginç haberler:

▪ Fotosentetik bakteriler kullanılarak örümcek ipeği oluşturuldu

▪ Platin atomları oda sıcaklığında karbon monoksiti oksitler

▪ Akıllı telefon HTC One max

▪ Ricoh Renkli Jel MFP'ler

▪ Uçak konforu ve kuruluk

Bilim ve teknolojinin haber akışı, yeni elektronik

 

Ücretsiz Teknik Kitaplığın ilginç malzemeleri:

▪ sitenin bölümü Güç kaynakları. Makale seçimi

▪ makale Ateş ve sudan yoksun bırakma. Popüler ifade

▪ makale Kırım Savaşı'nın son gazisi ne zaman öldü? ayrıntılı cevap

▪ makale Pedallı scooter. Kişisel ulaşım

▪ KR544UD2 işlemsel amplifikatöre dayalı UMZCH makalesi. Radyo elektroniği ve elektrik mühendisliği ansiklopedisi

▪ makale Birikmiş enerji ile deneyler. fiziksel deney

Bu makaleye yorumunuzu bırakın:

Adı:


E-posta isteğe bağlı):


Yorum:





Bu sayfanın tüm dilleri

Ana sayfa | Kütüphane | Makaleler | Site haritası | Site incelemeleri

www.diagram.com.ua

www.diagram.com.ua
2000-2024