Menü English Ukrainian Rusça Ana Sayfa

Hobiler ve profesyoneller için ücretsiz teknik kütüphane Ücretsiz teknik kütüphane


RADYO ELEKTRONİK VE ELEKTRİK MÜHENDİSLİĞİ ANSİKLOPEDİSİ
Ücretsiz kütüphane / Radyo-elektronik ve elektrikli cihazların şemaları

AF jeneratörünün dijital ölçeği. Radyo elektroniği ve elektrik mühendisliği ansiklopedisi

Ücretsiz teknik kütüphane

Radyo elektroniği ve elektrik mühendisliği ansiklopedisi / Ölçüm teknolojisi

makale yorumları makale yorumları

Для установки частоты в измерительных генераторах синусоидальных сигналов чаще всего используют шкальные устройства, механически связанные с регулирующим элементом прибора. Их недостатки известны: это - сложность изготовления, необходимость градуировки по образцовому генератору или частотомеру и недостаточная в ряде случаев точность установки частоты, зависящая не только от конструкции отсчетного устройства, но и от стабильности параметров радиоэлементов частотозадающих цепей.

От перечисленных недостатков во многом свободны так называемые электрические шкалы. В простейшем случае - это аналоговый частотомер, работа которого основана на измерении среднего напряжения сформированной из генерируемого сигнала последовательности импульсов с постоянной длительностью. Однако и такая шкала обеспечивает сравнительно низкую точность установки частоты (в лучшем случае 1...3%), а для ее калибровки также требуется образцовый генератор.

Применение цифровых способов измерения частоты позволяет избавиться от всех недостатков, присущих как механическим, так и электрическим шкалам. Частоту в этом случае отсчитывают непосредственно в цифровой форме и с высокой точностью, определяемой стабильностью так называемого измерительного временного интервала. Цифровая шкала упрощает компоновку и изготовление генератора, так как ее можно собрать в виде отдельного функционально законченного электронного блока и разместить в любом удобном месте прибора.

Наиболее простой цифровой способ измерения частоты - метод прямого счета, который заключается в подсчете числа периодов генерируемого сигнала за известный промежуток времени - измерительный временной интервал. Для определения частоты с точностью до 1 Гц он должен быть равен 1 с. Если из синусоидального сигнала сформировать последовательность импульсов, фронты которых совпадают с моментами перехода синусоидального напряжения через нулевой уровень, и подсчитывать их число, то при той же точности измерительный временной интервал можно уменьшить вдвое.

Использование узла удвоения в цифровой шкале сокращает временную задержку между моментом изменения частоты регулирующим элементом и началом индикации результата измерения, что имеет большое значение при установке частоты с точностью до 1 Гц. Однако временная задержка в 0,5 с при грубой настройке генератора все же велика. Поэтому совместно с цифровой шкалой, обеспечивающей точную установку частоты, иногда используют дополнительную механическую шкалу для грубой настройки. Можно поступить и иначе: уменьшить временную задержку еще на порядок, т. е. ввести в цифровую шкалу второй режим работы ("Грубо"), в котором измерительный временной интервал равен 0,05 с, а точность измерения частоты - ±10 Гц. Однако простое уменьшение измерительного временного интервала в 10 раз приводит к тому, что значение индицируемой частоты на шкале сдвигается вправо на один десятичный разряд, затрудняя считывание информации. Для устранения этого недостатка последовательность импульсов удвоенной частоты синусоидального сигнала в режиме "Грубо" следует подать на второй десятичный счетчик цифровой шкалы. В этом случае каждый разряд числа, определяющего измеренную частоту, будет индицироваться всегда в одном и том же месте.

Устройство обеспечивает измерение частоты в интервале от 1 Гц до 1 МГц. Амплитуда входного сигнала - до 15 В. Точность измерения, время измерения и индикации частоты в зависимости от режима работы равны ±10 Гц, 0,05 и 0,2 с (в режиме "Грубо") и 1 Гц, 0,5 и 2 с ("Точно"). Потребляемый ток - не более 50 мА.

Устройство состоит из входного формирователя, удвоителя частоты, датчика измерительных временных интервалов, селектора и счетчика импульсов и узла коммутации режимов работы.

Входной формирователь на компараторе DA1 представляет собой триггер Шмитта. Цепь его положительной обратной связи образована резисторами R3 и R6. Сформированная им из синусоидального сигнала последовательность импульсов через инверторы DD1.1, DD1.2 приходит на удвоитель частоты, выполненный на элементах R5, С2 и DD3.1. Инверторы DD1.1 и DD1.2 обеспечивают необходимую крутизну фронтов и спадов импульсов, от которой зависит четкость работы удвоителя частоты. С выхода элемента DD3.1 последовательность коротких положительных импульсов удвоенной частоты поступает на один из входов (вывод 9) селектора, функции которого выполняет элемент DD1.3.

Датчик измерительных временных интервалов содержит задающий генератор, делитель частоты, узел первоначальной установки и формирователь импульсов обнуления.

Задающий кварцевый генератор, собранный на элементах DD2.1, DD2.2, вырабатывает импульсы с частотой следования 100 кГц, которые через инверторы DD2.3 и DD2.4 проходят на делитель частоты на микросхемах DD4-DD9. В делитель входят шесть счетчиков, два из которых (DD6, DD8) делят частоту на пять, а остальные - на десять. Узел первоначальной установки, выполненный на элементах VD2, R10, С4, DD1.4, устанавливает в исходное состояние счетчики делителя при включении питания устройства.

Узел коммутации режимов работы собран на микросхеме DD10, элементах DD11.1-DD11.3, транзисторе VT1 и переключателе SB1. В режиме "Точно" импульсы с выхода счетчика DD5 через элементы DD11.1, DD11.3 поступают на вход С счетчика DD6, и в работе устройства участвует весь делитель. При этом на выходе счетчика DD9 формируется последовательность импульсов длительностью 0,5 с и частотой повторения 0,4 Гц. В режиме "Грубо" из делителя исключается счетчик DD5, а импульсы с выхода предыдущего (DD4) через элементы DD11.2 и DD11.3 проходят на счетчик DD6, и на выходе делителя формируется последовательность импульсов длительностью 0,05 с и частотой следования 4 Гц.

Dijital ölçek üreteci AF
Şekil.1 (büyütmek için tıklayın)

Импульсы с выхода счетчика DD9 подводятся к второму входу (вывод 8) элемента DD1.3 и к формирователю импульсов обнуления, собранному на элементах DD3.3, DD3.4, DD11.4. На выходе элемента DD3.4 появляются короткие импульсы, которые периодически, перед началом каждого цикла измерения, устанавливают в нулевое состояние счетчик импульсов на микросхемах DD12-DD17. Транзисторный ключ VT2 гасит индикаторы шкалы на время измерения частоты.

Импульсы с выхода селектора поступают на счетчик импульсов через элемент DD3.2, который исключает лишнее срабатывание счетчика по фронту импульса, задающего измерительный временной интервал. Счетчик импульсов включает в себя шесть однотипных узлов пересчета. В режиме "Точно" все узлы включены последовательно через элементы DD10.2, DD10.4, и импульсы удвоенной частоты с выхода селектора приходят на вход узла младшего разряда (DD12, HG1). В режиме "Грубо" эти импульсы через элементы DD10.3, DD10.4, подаются на второй узел пересчета (DD13, HG2), а транзисторный ключ VT1 выключает индикатор младшего десятичного разряда шкалы.

Точка индикатора HG4 на цифровой шкале разделяет разряды, индицирующие частоту в килогерцах и герцах.

Если измерять частоту с точностью до 1 Гц не нужно, шкалу можно упростить, исключив элементы SB1, DD5, DD10, DD11.1-DD11.3, DD12, HG1, VT1, R11 и соединив выход счетчика DD4 с выводом 4 микросхемы DD6, а выход элемента DD3.2 - с входом С счетчика DD13.

При снижении верхней рабочей частоты с 1 МГц до 600 кГц возможно дальнейшее упрощение устройства и применение микросхемы К176ИЕ3 вместо К176ИЕ4 в старшем разряде счетчика (DD17). В этом случае дополнительно исключают элементы DD1.1, DD1.2, DD2.3, DD2.4, выход элемента DD2.2 соединяют с входом С счетчика DD4, а вывод 7 микросхемы DA1 - с выводом 2 элемента DD3.1 и резистором R5.

В устройстве использован кварцевый резонатор (ZQ1) из набора "Кварц-21". Вместо него можно применить кварцевый резонатор на частоту 1 МГц, добавив в делитель частоты еще один счетчик К176ИЕ4 и включив его между элементом DD2.4 и микросхемой DD4.

Вместо указанных на схеме в устройстве могут быть применены как знаковые светодиодные индикаторы других типов, так и катодолюминесцентные. Схема подключения катодолюминесцентного индикатора ИВ3 показана на рис.2. В этом случае резистор R12 основной схемы подключают не к общему проводу, а к эмиттеру транзистора VT2. Кроме того, для питания индикаторов ИВ3 потребуется дополнительный источник напряжения 0,7 В.

Dijital ölçek üreteci AF
Ris.2

Схема подключения светодиодных индикаторов АЛС324Б или АЛС321Б представлена на рис.3. В качестве транзисторных ключей VT1-VT7 можно использовать любые кремниевые транзисторы с допустимым напряжением коллектор - эмиттер и база - эмиттер не менее 10 В и коллекторным током не менее 10 мА (КТ312Б, КТ3102Б, КТ315 с любым буквенным индексом, К1НТ251 и др.). В этом случае транзистор VT2 устройства должен быть составным. Базу дополнительного транзистора КТ807Б соединяют с эмиттером транзистора VT2, коллектор - с его коллектором, а эмиттер - с узлами пересчета (вывод 4). Кроме того, потребуется более мощный источник питания, так как потребляемый шкалой ток возрастет до 300 мА.

Dijital ölçek üreteci AF
Ris.3

На вход цифровой шкалы можно подавать сигналы амплитудой до 15 В, так как допустимое входное напряжение компаратора К521СА3 (DA1) не превышает 30 В. Для измерения частоты сигналов большего уровня шкалу нужно дополнить узлом защиты от перегрузки или входным делителем, понижающим напряжение на входах компаратора до допустимого значения.

При изготовлении устройства между выводами питания каждой микросхемы устанавливают конденсатор емкостью 1000 пФ. Для уменьшения влияния на генератор импульсных помех цифровую часть шкалы помещают в металлический экран, который соединяют с общим проводом генератора в одной точке. Если шкала предназначена для работы со звуковым генератором, формирующим сигналы с малыми уровнем и коэффициентом гармоник, то особо тщательно экранируют провода, соединяющие индикаторы НG1-HG6 со счетчиками, так как они могут быть источниками мощных импульсных помех, в особенности в случае применения индикаторов АЛС324Б или АЛС321Б. Полностью устранить импульсные помехи можно отключением питания шкалы после установки частоты генератора, для чего нужно предусмотреть отдельный выключатель.

Если предполагается использовать цифровую шкалу генератора для измерения частоты сигналов других источников, целесообразно на его передней панели установить дополнительное гнездо и переключатель, соединяющий вход устройства либо с выходом генератора, либо с этим гнездом.

При налаживании сначала проверяют осциллографом наличие импульсных последовательностей на выходе датчика измерительных временных интервалов. Затем на вход устройства подают синусоидальный сигнал амплитудой около 0,5 В. При этом на выходе удвоителя частоты (вывод 3 элемента DD3.1) должны наблюдаться импульсы амплитудой не менее 8 В. Устанавливая на генераторе значения частоты в рабочем интервале, проверяют правильность индикации при напряжении питания 8,1 и 9,9 В. В случае расхождения показаний шкалы и частоты генератора необходимо подобрать конденсатор С5, влияющий на делитель импульсов обнуления.

Автор: В.Власенко

Diğer makalelere bakın bölüm Ölçüm teknolojisi.

Oku ve yaz yararlı bu makaleye yapılan yorumlar.

<< Geri

En son bilim ve teknoloji haberleri, yeni elektronikler:

Optik Sinyalleri Kontrol Etmenin ve Yönetmenin Yeni Bir Yolu 05.05.2024

Modern bilim ve teknoloji dünyası hızla gelişiyor ve her gün bize çeşitli alanlarda yeni ufuklar açan yeni yöntem ve teknolojiler ortaya çıkıyor. Bu tür yeniliklerden biri, Alman bilim adamlarının, fotonik alanında önemli ilerlemelere yol açabilecek optik sinyalleri kontrol etmenin yeni bir yolunu geliştirmesidir. Son araştırmalar, Alman bilim adamlarının erimiş silika dalga kılavuzunun içinde ayarlanabilir bir dalga plakası oluşturmasına olanak sağladı. Sıvı kristal katmanın kullanımına dayanan bu yöntem, bir dalga kılavuzundan geçen ışığın polarizasyonunu etkili bir şekilde değiştirmeye olanak tanır. Bu teknolojik atılım, büyük hacimli verileri işleyebilen kompakt ve verimli fotonik cihazların geliştirilmesi için yeni umutlar açıyor. Yeni yöntemle sağlanan elektro-optik polarizasyon kontrolü, yeni bir entegre fotonik cihaz sınıfının temelini oluşturabilir. Bu, büyük fırsatların önünü açıyor ... >>

Primium Seneca klavye 05.05.2024

Klavyeler günlük bilgisayar işlerimizin ayrılmaz bir parçasıdır. Ancak kullanıcıların karşılaştığı temel sorunlardan biri, özellikle premium modellerde gürültüdür. Ancak Norbauer & Co'nun yeni Seneca klavyesiyle bu durum değişebilir. Seneca sadece bir klavye değil, ideal cihazı yaratmak için beş yıllık geliştirme çalışmasının sonucudur. Bu klavyenin akustik özelliklerinden mekanik özelliklerine kadar her yönü dikkatle düşünülmüş ve dengelenmiştir. Seneca'nın en önemli özelliklerinden biri, birçok klavyede yaygın olan gürültü sorununu çözen sessiz dengeleyicileridir. Ayrıca klavye çeşitli tuş genişliklerini destekleyerek her kullanıcı için kolaylık sağlar. Seneca henüz satışa sunulmasa da yaz sonunda piyasaya sürülmesi planlanıyor. Norbauer & Co'nun Seneca'sı klavye tasarımında yeni standartları temsil ediyor. O ... >>

Dünyanın en yüksek astronomi gözlemevi açıldı 04.05.2024

Uzayı ve onun gizemlerini keşfetmek, dünyanın her yerindeki gökbilimcilerin dikkatini çeken bir görevdir. Şehrin ışık kirliliğinden uzak, yüksek dağların temiz havasında yıldızlar ve gezegenler sırlarını daha net bir şekilde açığa çıkarıyor. Dünyanın en yüksek astronomi gözlemevi olan Tokyo Üniversitesi Atacama Gözlemevi'nin açılışıyla astronomi tarihinde yeni bir sayfa açılıyor. Deniz seviyesinden 5640 metre yükseklikte bulunan Atacama Gözlemevi, uzay araştırmalarında gökbilimcilere yeni fırsatlar sunuyor. Bu site, yer tabanlı bir teleskop için en yüksek konum haline geldi ve araştırmacılara Evrendeki kızılötesi dalgaları incelemek için benzersiz bir araç sağladı. Yüksek rakımlı konum daha açık gökyüzü ve atmosferden daha az müdahale sağlasa da, yüksek bir dağa gözlemevi inşa etmek çok büyük zorluklar ve zorluklar doğurur. Ancak zorluklara rağmen yeni gözlemevi gökbilimcilere geniş araştırma olanakları sunuyor. ... >>

Arşivden rastgele haberler

Akustik işaretçiler kuş çarpmalarına karşı koruma sağlar 07.03.2018

Genellikle insanlar, pencere işaretleri ve ışık sinyalleri gibi görebilecekleri işaretlerle kuşları uzak tutmaya çalışırlar, ancak bu yöntem her zaman işe yaramaz. Muhtemel bir açıklama, kuşların gözlerinin genellikle başının önüne değil, yanlarına yerleştirilmesidir, böylece görüşlerinin tam ortasında bir kör nokta vardır. Böylece bilim adamları, belki de sesin daha iyi bir uyarı sinyali olabileceği fikrini buldular.

Bilim adamları, bir otobüsün uzunluğu hakkında özel bir koridordan uçmak için 16 tutsak zebra ispinozunu eğitti. Bazen kuşların koridorun tüm uzunluğu boyunca serbestçe dolaşmasına izin verildi, ancak diğer deneylerde, bir binaya çarpmanın güvenli eşdeğeri olarak kuşları nazikçe yakalamak için koridorda bir ağ kuruldu.

Kuşlar ağa yaklaşırken yavaşladılar, ancak ağdan bir metre ötede yüksek bir ses duyduklarında daha da yavaşladılar. Bununla birlikte, sesin kendisi yavaşlamalarına neden olmadı, bu nedenle bilim adamları, "ses işaretçisinin" hareketinin kuşların genel dikkatini artırdığını ve ağı daha hızlı fark ettiklerini öne sürüyorlar.

Bu hipotez lehine ek kanıt, uçuş sırasında kuşların duruşlarındaki değişiklikti: Bir ses duyduklarında havada daha düz kalmaya başladılar. Bilimsel bir çalışma, onları tehlikeye karşı uyarmak için bir siren ve bir ışık sinyali kullanıldığında daha az kuşun binalara çarptığını göstermiştir.
Çalışmanın yazarları, bu tür "akustik işaretlerin" doğada kuşları nasıl etkileyeceğini gözlemleyerek bu yöntemin "sahada" da test edilmesi gerektiğini kabul ediyor. Bu konu sadece kuşları kurtarmakla ilgili değil, aynı zamanda ekonomik öneme sahip: kuşların uçak ve yer yapıları ile çarpışması, arıza ve afet riskini artırmakta ve havacılık endüstrisine ve ekonominin diğer sektörlerine her yıl milyarlarca dolar zarara neden olmaktadır. .

Diğer ilginç haberler:

▪ Ev müon dedektörü

▪ Uyuşturucuya karşı suni deri

▪ LG'den 88 inç OLED 8K ekran

▪ Böbrek sağlığı anneye bağlıdır

▪ Nükleer olmayan denizaltı Taigei

Bilim ve teknolojinin haber akışı, yeni elektronik

 

Ücretsiz Teknik Kitaplığın ilginç malzemeleri:

▪ Sitenin Kullanım Talimatları bölümü. Makale seçimi

▪ makale Orada kim yürüyor? Sol, sol, sol! Popüler ifade

▪ makale Golgota nerede bulunur? ayrıntılı cevap

▪ makale Vişne. Efsaneler, yetiştirme, uygulama yöntemleri

▪ makale Sinyal cihazı Buzdolabının kapısını açın. Radyo elektroniği ve elektrik mühendisliği ansiklopedisi

▪ Makale Haritası kaybolur ve bulunur. Odak sırrı

Bu makaleye yorumunuzu bırakın:

Adı:


E-posta isteğe bağlı):


Yorum:





Bu sayfanın tüm dilleri

Ana sayfa | Kütüphane | Makaleler | Site haritası | Site incelemeleri

www.diagram.com.ua

www.diagram.com.ua
2000-2024