Menü English Ukrainian Rusça Ana Sayfa

Hobiler ve profesyoneller için ücretsiz teknik kütüphane Ücretsiz teknik kütüphane


RADYO ELEKTRONİK VE ELEKTRİK MÜHENDİSLİĞİ ANSİKLOPEDİSİ
Ücretsiz kütüphane / Radyo-elektronik ve elektrikli cihazların şemaları

Laboratuvar güç kaynağı için amper-voltmetre. Radyo elektroniği ve elektrik mühendisliği ansiklopedisi

Ücretsiz teknik kütüphane

Radyo elektroniği ve elektrik mühendisliği ansiklopedisi / Ölçüm teknolojisi

makale yorumları makale yorumları

Этот прибор предназначен для совместной работы с блоком питания, описание которого опубликовано в [1], однако может быть подключен и к другому подобному блоку. Он не только показывает выходное напряжение и ток нагрузки блока, но и выполняет несколько дополнительных функций, делающих лабораторный блок питания более надежным и облегчающих практическую работу с ним.

Основная функция предлагаемого ампервольтметра (далее АВМ) - измерение выходного напряжения и тока нагрузки блока питания - дополнена возможностью индикации установленного порога срабатывания токовой защиты блока, собранного по описанию в [1]. Это избавляет от необходимости в процессе установки этого порога нагружать блок заданным максимальным током, после чего аккуратно "ловить" нужное положение ручки управления. Имеющийся в АВМ микроконтроллер легко вычисляет текущее значение порога по измеренному им напряжению на движке переменного резистора R5 (см. рис. 1 в [1]) и сопротивлению резистора-датчика тока R13 (там же). Вычисленное значение выводится на ЖКИ.

Laboratuvar güç kaynağı için ampermetre voltmetre
Şek. 1

По результатам измерения напряжения на входе и выходе блока и тока нагрузки вычисляются и отображаются значения мощности нагрузки и мощности, рассеиваемой регулирующим транзистором блока. Кроме того, контролируется температура теплоотвода этого транзистора. По результатам ее измерения автоматически включается и выключается вентилятор, обдувающий теплоотвод. А в случае значительного перегрева блок питания отключается от сети.

Дополнительная функция АВМ - ограничение выброса тока зарядки сглаживающих конденсаторов питающего блок выпрямителя, который возникает при его включении в сеть. Кроме того, в АВМ предусмотрен режим самокалибровки.

Размеры прибора лишь немного превышают габариты примененного в нем ЖКИ. В зависимости от выбранного режима отображения на его экран выводятся выходное напряжение, В и ток нагрузки, А (рис. 1); мощность нагрузки, Вт (рис. 2); порог срабатывания токовой защиты, А (рис. 3); температура теплоотвода регулирующего транзистора, оС, рассеиваемая им мощность, Вт (рис. 4). Если в процессе работы какой-либо из параметров, не выведенных в данный момент на экран, изменился, его значение появляется на нем, а спустя некоторое время прежний режим отображения восстанавливается.

Laboratuvar güç kaynağı için ampermetre voltmetre
Şek. 2

Laboratuvar güç kaynağı için ampermetre voltmetre
Şek. 3

Laboratuvar güç kaynağı için ampermetre voltmetre
Şek. 4

Схема АВМ показана на рис. 5. Его основные узлы - входные делители напряжения и помехоподавляющие фильтры, микроконтроллер DD1, содержащий АЦП и производящий все необходимые вычисления, а также десятиразрядный ЖКИ HG1.

Laboratuvar güç kaynağı için ampermetre voltmetre
Pirinç. 5 (büyütmek için tıklayın)

Управляют АВМ с помощью двух кнопок. Кнопкой SB1 переключают режимы отображения по кольцу в представленной на рис. 1-4 последовательности. Кнопка SB2 предназначена для включения и выключения блока питания, с которым работает АВМ.

Так как АЦП, встроенный в микроконтроллер, способен измерять лишь напряжение, не превышающее напряжение его питания, на двух входах АЦП установлены делители напряжения. Первый, состоящий из резисторов R1 и R3, уменьшает в десять раз выходное напряжение блока питания. Второй делитель состоит из резисторов R2 и R10 и имеет коэффициент деления 20. Он уменьшает до приемлемого для АЦП значения напряжение, поступающее на блок питания от выпрямителя. Измерение этого напряжения необходимо для вычисления рассеиваемой на регулирующем транзисторе мощности.

В цепях измерения тока нагрузки и порога срабатывания токовой защиты делители не нужны, так как напряжение на датчике тока R13 [1] и движке переменного резистора R5 [1] не превышает допустимого для АЦП значения.

На все используемые входы АЦП микроконтроллера измеряемые напряжения подаются через ФНЧ с частотой среза около 7 Гц. Это R4C1 в канале измерения выходного напряжения (UO), R5C2 в канале измерения тока нагрузки (Iн), R6C3 в канале измерения порога срабатывания токовой защиты (Imaksimum), R7C4 в канале измерения температуры и R9C5 в канале измерения выпрямленного напряжения Uвыпр нужны для снижения погрешности, связаннои с пульсацией измеряемого напряжения.

Обработанные программой результаты работы АЦП выводятся на индикатор HG1, который подключен к микроконтроллеру по интерфейсу I2C. Поскольку, согласно спецификации I2C, выходы интерфейсных сигналов должны быть выполнены по схеме с открытым коллектором (стоком), программа конфигурирует линии PB0 и PB2 микроконтроллера соответствующим образом. Нагрузочными для них служат два резистора сборки DR1.

Еще два резистора той же сборки поддерживают высокий уровень на входах PB1 и PB3, когда подключенные к ним кнопки SB1 и SB2 не нажаты. Нажатие на любую из нихустанавливает на соответствующем входе низкий уровень. Высокий уровень на входе установки микроконтроллера в исходное состояние поддерживает резистор R10.

Выводы микроконтроллера, используемые для загрузки программы в его память, выведены на разъем X3, который при необходимости соединяют с программатором. Транзистор VT1 по сигналам микроконтроллера управляет подсветкой экрана ЖКИ HG1.

Измеряемые сигналы подают гибким кабелем, на котором установлена розетка X1. Сигналы управления вентилятором, включением блока питания, а также управления цепью ограничения тока зарядки сглаживающих конденсаторов выпрямителя выведены на штыревую колодку X2.

Напряжение питания 5 В подается на выводы 5 и 15 микроконтроллера. Так как от вывода 15 питается встроенный АЦП, для исключения помех его работе в цепь этого вывода включен фильтр L1C9. Через конденсатор С7 замыкается импульсная составляющая потребляемого микроконтроллером тока.

АВМ смонтирован на двусторонней печатной плате (рис. 6). Перед монтажом ее нужно "прозвонить" и удалить обнаруженные непротравленные перемычки между проводниками. Для микроконтроллера на плате рекомендуется установить панель, так как при ошибках программирования микроконтроллеров " семейства AVR нередки случаи нарушения их связи с обычным последовательным программатором. Ее можно восстановить только с помощью так называемого высоковольтного программатора, в панель которого придется перенести микроконтроллер, извлеченный из панели на плате АВМ.

Laboratuvar güç kaynağı için ampermetre voltmetre
Pirinç. 6 (büyütmek için tıklayın)

Поскольку в домашних условиях металлизировать отверстия платы трудно, выводы деталей необходимо пропаивать с обеих ее сторон. Панель для микроконтроллера при этом должна быть цанговой, иначе пропаять ее выводы со стороны установки деталей не удастся. В отверстия, показанные на рис. 6 залитыми, при отсутствии металлизации необходимо вставить и пропаять с двух сторон короткие отрезки неизолированного провода.

Металлизацию можно выполнить и с помощью пустотелых медных заклепок (пистонов), вставляя их в отверстия платы и развальцовывая с двух сторон. Наборы таких пистонов продаются, например, под торговыми марками LPKF EasyContac и BG9.S rivets, однако они довольно дороги.

На плате предусмотрены отверстия для ее крепления и места для установки кнопок SB1 и SB2, а также еще одной не показанной на схеме кнопки (она обозначена SB3 и через промежуточное реле может использоваться как кнопка SB1 в [1]) и светодиода HL1 [1]. Контакты кнопки SB3 и выводы светодиода соединены с разъемом X5, который также на схеме не показан.

При необходимости габариты платы можно уменьшить до 65x42 мм, обрезав ее по имеющейся на рис. 6 штриховой линии. В этом случае кнопки SB1 и SB2 располагают в любом удобном месте и соединяют с разъемом X4 жгутом проводов или отрезком плоского кабеля.

Резисторы делителей напряжения (R1-R3, R10) - С2-23 с допустимым отклонением от номинала ±1 %. Если резистор R2 номиналом 191 кОм найти не удастся, его можно составить из двух номиналами 180 и 10 кОм. Остальные резисторы - С1-4-0,125. Терморезистор RK1 c отрицательным температурным коэффициентом сопротивления - B57703. Резисторная сборка 5A332J может быть заменена отечественной НР-1-4-4М из резисторов номиналом 3,3 кОм. Конденсаторы - керамические К10-17 или импортные. Дроссель L1 - EC-24 на 100 мкГн.

В АВМ применены разъемы BLD-6 (X1), PLD-6 (X2), PLD-10 (X3), PLS-4(X4, X5). Кнопки - любые тактовые с подходящей длиной толкателя, например TS-A6PS.

Индикатор - MT-10T11 [2] с любыми буквенными и цифровыми индексами, кроме 3V0. Индикаторы с таким индексом рассчитаны на напряжение питания 3 В и при 5 В работать не будут. Подойдет также индикатор MT-10T12, однако он вдвое большего размера.

Полевой транзистор 2N7000 можно заменить любым другим n-канальным с изолированным затвором и пороговым напряжением не более 3 В. Можно использовать даже биполярный транзистор структуры n-p-n, однако это приведет к большей рассеиваемой на нем мощности и меньшей яркости подсветки.

Микроконтроллер ATtiny26-16PU можно попробовать заменить на ATtiny26L-PU, но его работа гарантирована при частоте кварцевого резонатора не более 8 МГц. Программа микроконтроллера разработана в среде Atmel AVR Studio и написана на языке ассемблера. Загрузить ее в память микроконтроллера можно с помощью фирменного программатора AVR ISP mk II непосредственно из среды разработки либо воспользоваться программой AVReAl [3] и адаптером Altera ByteBlaster [4]. Расположение выводов разъема X3 соответствует именно этому адаптеру. Не исключено использование и других программаторов для микроконтроллеров семейства AVR. Коды из файла avm.hex заносят во FLASH-память микроконтроллера, а из файла avm.eep - в его EEPROM. Конфигурация микроконтроллера должна соответствовать рис. 7.

Laboratuvar güç kaynağı için ampermetre voltmetre
Şek. 7

Алгоритм работы программы состоит в циклическом опросе пяти каналов измерения с частотой 50 Гц. При измерениях в каналах напряжения и тока образцовое напряжение АЦП равно 2,56 В и подается от встроенного в микроконтроллер источника. При измерении температуры образцовым служит напряжение питания микроконтроллера (5 В).

Результаты работы АЦП складываются в кольцевой буфер, в котором умещаются 25 отсчетов, каждый из которых занимает два байта (АЦП микроконтроллера - десятиразрядный). Фактически для каждого канала хранится история из пяти последних отсчетов. Для уменьшения флюктуации показаний в каждом канале вычисляется среднее пяти последних отсчетов [5]. После обработки значения тока и напряжения представляются целыми числами, лежащими в интервале 0-255, причем цена младшего разряда напряжения - 0,1 В, а тока - 0,01 А. Следовательно, пределы измерения напряжения и тока равны соответственно 25,5 В и 2,55 А.

Значение выпрямленного напряжения на входе блока питания [1] на индикаторе не отображается, но используется для вычисления рассеиваемой этим блоком мощности.

Поправочные коэффициенты для каждого канала (за исключением канала температуры), учитывающие разброс параметров АЦП и резисторов делителей напряжения, хранятся в EEPROM микроконтроллера. По умолчанию все они равны 1, но в результате выполнения процедуры самокалибровки могут принимать значения от 0 до 2-1/64 с шагом 1/64.

Температура может принимать значение от -55 до +125 оС и отображается на ЖКИ в целых градусах Цельсия. Для ее вычисления используется табличное преобразование результата работы АЦП. Если измеренное значение температуры больше 45 оС, формируется команда на включение вентилятора, если меньше 40 оС, вентилятор выключается. В случае превышения температуры 90 оС происходит аварийное отключение блока питания, а на ЖКИ выводится надпись "Overheat".

Чтобы запустить режим самокалибровки, необходимо кнопкой SB2 подать сигнал выключения блока питания (АВМ при этом остается включенным), затем нажать на кнопку SB1 и, удерживая ее, еще раз нажать на SB2. После этого на разъем X1 АВМ подают следующие образцовые напряжения: на вход Uвыпр (конт. 6) - 40 В, на вход UO (конт. 1) - 20 В, на входы Iн(конт. 2) и Imaksimum (конт. 5) - 0,5 В, что соответствует падению напряжения на датчике тока (R13 в [1]) при Iн = 2 A. На вход контроля температуры (в точку соединения резисторов R7, R8 и терморезистора RK1) подают напряжение 4 В.

При калибровке каналы обозначаются на индикаторе буквами в крайнем левом знакоместе: U - выходное напряжение, I - ток нагрузки, L - ток срабатывания защиты, t - температура, r - напряжение выпрямителя. Например, перед калибровкой канала выходного напряжения выводится надпись, показанная на рис. 8.

Laboratuvar güç kaynağı için ampermetre voltmetre
Şek. 8

Выбирают каналы для калибровки поочередно нажатиями на кнопку SB1, а с помощью SB2 запускают процесс калибровки выбранного канала. О его завершении и записи результата в EEPROM сообщит надпись "Saved", а еще через 2 с на индикаторе можно будет увидеть значение соответствующего параметра, вычисленное с использованием подобранного коэффициента. После этого можно нажатием на кнопку SB1 перейти к следующему каналу или повторить калибровку прежнего, нажав на SB2.

Выводя на индикатор значение выходного напряжения, АВМ учитывает падение напряжения на датчике тока, вычитая его из результата измерения. Поэтому по завершении калибровки, пока образцовые напряжения с входов АВМ сняты, на индикатор, работающий в режиме отображения выходного напряжения и тока нагрузки, будут выведены 19,5 В (на 0,5 В меньше образцового напряжения 20 В) и 2 А (соответствует падению напряжения 0,5 В на датчике тока).

К блоку питания [1] АВМ подключают по схеме, изображенной на рис. 9. Резистор R13, согласно описанию блока, составлен из трех одноваттных резисторов номиналом 1 Ом, соединенных параллельно, и имеет сопротивление 0,33 Ом. К ним нужно добавить еще один такой же резистор, уменьшив общее сопротивление до 0,25 Ом. Это упрощает расчеты, производимые микроконтроллером АВМ.

Laboratuvar güç kaynağı için ampermetre voltmetre
Şek. 9

На той же схеме показан служащий источником входного напряжения блока питания выпрямитель на трансформаторе T1 и диодах VD1-VD4, снабженный узлом ограничения тока зарядки сглаживающего конденсатора после включения. Для его работы одновременно с сигналом, открывающим транзистор VT1, что приводит к срабатыванию реле K1 и подаче сетевого напряжения на сетевую обмотку трансформатора, микроконтроллер подает и сигнал, открывающий фототранзистор оптрона U1. В результате транзистор VT2 после включения блока остается закрытым, а ток зарядки сглаживающих конденсаторов выпрямителя течет через ограничивающий его резистор R5.

Программа микроконтроллера АВМ следит за скоростью изменения напряжения на этих конденсаторах. Как только она в достаточной мере уменьшится (это означает, что конденсаторы зарядились почти полностью), сигнал, открывающий фототранзистор оптрона U1, будет снят. В результате напряжение затвор-исток транзистора VT2 увеличится. Его канал сток-исток откроется. Поскольку сопротивление открытого канала всего 0,018 Ом, сколько-нибудь заметный ток через резистор R5 более не течет и на дальнейшую работу устройства не влияет.

Трансформатор T1 - ТТП-60 2x12 В. Диоды Шоттки 90SQ045, из которых собран мостовой выпрямитель, могут быть заменены на 1N5822.

Сам АВМ питается от отдельного источника U2 напряжением 5 В, основное требование к которому - минимум пульсаций. Микроконтроллер потребляет не более 20 мА, подсветка индикатора - около 100 мА, еще 100 мА необходимо для реле K1 (TRIL-5VDC-SD-2CM).

Файл печатной платы АВМ в формате Sprint Layout 5.0 и программу его микроконтроллера можно скачать с ftp://ftp.radio.ru/pub/2014/02/avm.zip.

Edebiyat

  1. Высочанский П. Простой лабораторный блок питания 1...20В с регулируемой токовой защитой. - Радио, 2006, № 9, с. 37.
  2. Жидкокристаллический модуль MT-10T11. - melt.com.ru/ docs/MT-10T11.pdf.
  3. AVReAl - ISP программатор AVR. - real.kiev.ua/avreal/.
  4. Адаптеры, с которыми может работать AVReAl. - real.kiev.ua/old/avreal/ru/adapters.html.
  5. AVR222: 8-point Moving Average Filter. - atmel.com/Images/ doc0940.pdf.

Автор: В. Рыбаков

Diğer makalelere bakın bölüm Ölçüm teknolojisi.

Oku ve yaz yararlı bu makaleye yapılan yorumlar.

<< Geri

En son bilim ve teknoloji haberleri, yeni elektronikler:

Bahçelerdeki çiçekleri inceltmek için makine 02.05.2024

Modern tarımda, bitki bakım süreçlerinin verimliliğini artırmaya yönelik teknolojik ilerleme gelişmektedir. Hasat aşamasını optimize etmek için tasarlanan yenilikçi Florix çiçek seyreltme makinesi İtalya'da tanıtıldı. Bu alet, bahçenin ihtiyaçlarına göre kolayca uyarlanabilmesini sağlayan hareketli kollarla donatılmıştır. Operatör, ince tellerin hızını, traktör kabininden joystick yardımıyla kontrol ederek ayarlayabilmektedir. Bu yaklaşım, çiçek seyreltme işleminin verimliliğini önemli ölçüde artırarak, bahçenin özel koşullarına ve içinde yetişen meyvelerin çeşitliliğine ve türüne göre bireysel ayarlama olanağı sağlar. Florix makinesini çeşitli meyve türleri üzerinde iki yıl boyunca test ettikten sonra sonuçlar çok cesaret vericiydi. Birkaç yıldır Florix makinesini kullanan Filiberto Montanari gibi çiftçiler, çiçeklerin inceltilmesi için gereken zaman ve emekte önemli bir azalma olduğunu bildirdi. ... >>

Gelişmiş Kızılötesi Mikroskop 02.05.2024

Mikroskoplar bilimsel araştırmalarda önemli bir rol oynar ve bilim adamlarının gözle görülmeyen yapıları ve süreçleri derinlemesine incelemesine olanak tanır. Bununla birlikte, çeşitli mikroskopi yöntemlerinin kendi sınırlamaları vardır ve bunların arasında kızılötesi aralığı kullanırken çözünürlüğün sınırlandırılması da vardır. Ancak Tokyo Üniversitesi'ndeki Japon araştırmacıların son başarıları, mikro dünyayı incelemek için yeni ufuklar açıyor. Tokyo Üniversitesi'nden bilim adamları, kızılötesi mikroskopinin yeteneklerinde devrim yaratacak yeni bir mikroskobu tanıttı. Bu gelişmiş cihaz, canlı bakterilerin iç yapılarını nanometre ölçeğinde inanılmaz netlikte görmenizi sağlar. Tipik olarak orta kızılötesi mikroskoplar düşük çözünürlük nedeniyle sınırlıdır, ancak Japon araştırmacıların en son geliştirmeleri bu sınırlamaların üstesinden gelmektedir. Bilim insanlarına göre geliştirilen mikroskop, geleneksel mikroskopların çözünürlüğünden 120 kat daha yüksek olan 30 nanometreye kadar çözünürlükte görüntüler oluşturmaya olanak sağlıyor. ... >>

Böcekler için hava tuzağı 01.05.2024

Tarım ekonominin kilit sektörlerinden biridir ve haşere kontrolü bu sürecin ayrılmaz bir parçasıdır. Hindistan Tarımsal Araştırma Konseyi-Merkezi Patates Araştırma Enstitüsü'nden (ICAR-CPRI) Shimla'dan bir bilim insanı ekibi, bu soruna yenilikçi bir çözüm buldu: rüzgarla çalışan bir böcek hava tuzağı. Bu cihaz, gerçek zamanlı böcek popülasyonu verileri sağlayarak geleneksel haşere kontrol yöntemlerinin eksikliklerini giderir. Tuzak tamamen rüzgar enerjisiyle çalışıyor, bu da onu güç gerektirmeyen çevre dostu bir çözüm haline getiriyor. Eşsiz tasarımı, hem zararlı hem de faydalı böceklerin izlenmesine olanak tanıyarak herhangi bir tarım alanındaki popülasyona ilişkin eksiksiz bir genel bakış sağlar. Kapil, "Hedef zararlıları doğru zamanda değerlendirerek hem zararlıları hem de hastalıkları kontrol altına almak için gerekli önlemleri alabiliyoruz" diyor ... >>

Arşivden rastgele haberler

Laforge Optical'dan Icis akıllı gözlükler 20.02.2014

Laforge Optical, "Gözlükler her şeyden önce bir moda aksesuarıdır," diye karar verdi. Ve Laforge geliştiricileri, Google Glass gadget'ını kaideden çıkarmak için el sallayarak rekabette öne çıkan bir teknolojik cihaz yaratmaya ciddi şekilde kararlılarsa, bunu Google'ın yaratılışın en savunmasız kısmına vurarak yapmalıdırlar - onun tasarım.

Şu anda ön siparişe sunulan Icis akıllı gözlükler, yalnızca sahibinin teknolojik ilerlemesini somutlaştırmakla kalmayacak, aynı zamanda cihaz sahibinin de iyi bir zevke sahip olduğunu ve modern modadan anladığını gösterecek. Teknik özelliklere gelince, Icis bu sınıf cihazlar için klasik işlevselliğe sahip olacak: bir kamera (cihazın beta sürümlerinde olmayacak), mikrofon, hoparlör ve dokunmatik yüzey ve gözlükler ekran görevi görecek. , gözlükler için mevcut olan maksimum görüş alanını kaplarken. Kullanıcı dostu bir arayüz, akıllı telefonlardan ve iOS, Android veya Windows işletim sistemlerini çalıştıran diğer mobil cihazlardan gelen bildirimleri otomatik olarak lenslerde bilgilendirici bir görsel görüntüye dönüştürecektir. Kalın indeksli nihai Icis modelinin görüntü çözünürlüğü 800x600 piksel olacak, ancak bu yılın ortasından itibaren mevcut olan prototipler daha mütevazı parametrelere sahip olacak.

CEO ve Corey Mack, "Ana rakibimiz Google Glass, ancak Laforge Optical uzmanlarının Icis'i oluştururken seçtikleri yaklaşım, rakip şirketler konseptinden kökten farklı. Biz yabancıların yakından ilgilenemeyeceği bir cihaz yaratmaya odaklanmış durumdayız." , Laforge Optical'ın kurucusu.

"Akıllı gözlükler" Icis, aksesuarlardaki modern moda trendlerinin ve Google Glass gibi cihazlarda kullanılan temel teknolojik çözümlerin bir simbiyozudur. Doğru, bu durumda, böyle bir gadget'ın sahibinin, sağ üst köşede çok uygun olmayan ekrana sürekli bakması gerekmeyecek - Icis lenslerinin tüm yüzeyi etkileşimli bir ekran haline gelecektir.

Laforge Optical'ın geliştiricilerinin önüne çıkan yenilikçi görevlerden biri, Icis'in farklı platformlarla yazılım uyumluluğu sorunlarını çözmektir. Bunun için, mobil cihazınızda ve operatör ağınızda yüklü uygulamalardan bildirim göndermekten sorumlu olan SocialFlo uygulaması oluşturuldu. Yazılımı akıllı telefonunuza indirmeniz ve Bluetooth üzerinden Icis akıllı gözlüklerle senkronize etmeniz yeterlidir.

Cihazın yaratıcıları, cihazlarının üç ana çalışma moduna sahip olacağını kaydetti: normal, aktif (görüntülenen bildirim sayısında bir sınırlama ile) ve ilgili olmayan tüm iletilen bilgileri filtreleyecek "Sürücü" modu. araba kullanma süreci. Icis ayrıca üç farklı versiyonda satışa sunulacak ve alıcıya tam olarak en çok sempati duyduğu stili seçme hakkı verecek.

Yeni öğelerin maliyetine gelince, burada fiyat, kitin türüne ve cihazın versiyonuna bağlı olarak farklılık gösterir. Test programına katılmak için 220 $ depozito bırakarak, gadget'ın ilk prototipini tanıyabilirsiniz. Temel Icis Early Beta Kit'in (IEBK) hemen ve herhangi bir yükümlülük altına girmeden sahibi olmak istiyorsanız, cihaz için 820$ ödemeniz gerekecek. Bu durumda, bu yılın yazında tam teşekküllü testlere başlayabileceksiniz. 2014'ün sonunda, bir sonraki değişiklik görünecek - Icis Early Kit (IBK) 420 $ fiyatla ve gadget'ınızı üreticiye geri göndererek önceki "akıllı gözlükler" sürümünü IEK sürümüne yükseltebilirsiniz. Ayrıca Icis Early Kit'i, bunun için ek 200 $ ödeyerek Icis'in zaten seri versiyonuyla değiştirmek de mümkün olacak.

Icis Bold modelinin lansmanını ima eden son sürümün 2015'in başlarında yapılması planlanıyor. Burada, alıcılar gadget için üç stilistik çözüm arasından seçim yapabilir. Yeniliğin teknik özellikleri de değişecek: lenslerin çözünürlüğü 800x600 piksele eşit olacak, IEBK ve IBK'da ise ön bilgilere göre 640x480 piksel olacak.

Diğer ilginç haberler:

▪ Bir konut binasında fotovoltaik cam

▪ Hafızalı plastik

▪ Alibaba AI Metin Yazarı

▪ Saf hidrojen salınımıyla plastiği grafene geri dönüştürmek

▪ Reklam afişi sayacı

Bilim ve teknolojinin haber akışı, yeni elektronik

 

Ücretsiz Teknik Kitaplığın ilginç malzemeleri:

▪ Garland web sitesinin bölümü. Makale seçimi

▪ Video Yakalama Temelleri makalesi. video sanatı

▪ makale İlk kuaför kimdi? ayrıntılı cevap

▪ makale Çavdar ekimi. Efsaneler, yetiştirme, uygulama yöntemleri

▪ makale PIC16F628 mikrodenetleyici üzerindeki dijital termostat. Radyo elektroniği ve elektrik mühendisliği ansiklopedisi

▪ süpermen makalesi Odak sırrı

Bu makaleye yorumunuzu bırakın:

Adı:


E-posta isteğe bağlı):


Yorum:





Bu sayfanın tüm dilleri

Ana sayfa | Kütüphane | Makaleler | Site haritası | Site incelemeleri

www.diagram.com.ua

www.diagram.com.ua
2000-2024