Menü English Ukrainian Rusça Ana Sayfa

Hobiler ve profesyoneller için ücretsiz teknik kütüphane Ücretsiz teknik kütüphane


RADYO ELEKTRONİK VE ELEKTRİK MÜHENDİSLİĞİ ANSİKLOPEDİSİ
Ücretsiz kütüphane / Radyo-elektronik ve elektrikli cihazların şemaları

Kapasitörlerin kapasitansını ölçmek için multimetre eki. Radyo elektroniği ve elektrik mühendisliği ansiklopedisi

Ücretsiz teknik kütüphane

Radyo elektroniği ve elektrik mühendisliği ansiklopedisi / Ölçüm teknolojisi

makale yorumları makale yorumları

В лаборатории радиолюбителя все чаще можно встретить цифровые мультиметры. Самые простые из них относительно недороги и обладают приемлемыми характеристиками. Изготовив несложные приставки к такому мультиметру, можно расширить его функциональные возможности. Описание одной из таких приставок для измерения емкости конденсаторов автор предлагает вниманию читателей.

С помощью простой приставки к цифровому мультиметру можно измерять емкости конденсаторов в диапазоне 2 пФ... 200 мкФ. Она собрана на двух микросхемах, одна из которых - интегральный таймер.

Схема приставки приведена на рис. 1. Принцип ее работы основан на периодической зарядке измеряемого конденсатора до фиксированного напряжения и последующей его разрядке через эталонный резистор. На микросхеме DA2 собран генератор прямоугольных импульсов, частоту которых устанавливают выбором одного из токозадающих резисторов R1-R8 и конденсаторов C3, С4 переключателем SA1; с помощью секции SA1.3 переключают эталонные резисторы R12-R15. Амплитуду импульсов генератора на микросхеме DA2 поддерживает интегральный стабилизатор напряжения на DA1.

Kondansatörlerin kapasitansını ölçmek için multimetreye bağlantı

Работает приставка следующим образом. После подключения проверяемого конденсатора Сх к гнездам XS3 в момент появления импульса напряжения на выходе DA2 происходит его быстрая зарядка через диод VD2. Во время паузы конденсатор разряжается через эталонное сопротивление, и при этом формируется импульс, длительность которого пропорциональна емкости конденсатора Сх. Эти импульсы поступают на интегрирующую цепочку R11C5, на выходе которой образуется напряжение, пропорциональное длительности этих импульсов и, соответственно, емкости измеряемого конденсатора. К выходу этой цепи и подключают мультиметр в режиме измерения напряжения на пределе 200 мВ.

Генератор вырабатывает импульсы с частотой следования примерно 25 кГц (положение 1 переключателя SA1, поддиапазон 20 пФ); 2,5 кГц (положение 2, 200 пФ); 250 Гц (положение 3, 2000 пФ) и 25 Гц (положения 4-8, поддиапазоны 0,02- 200 мкФ). Для повышения экономичности напряжение питания на приставку подается через кнопку SB1 только на время измерения. Это позволяет питать устройство от автономного источника, например, батарей "Крона", "Корунд", "Ника" 7Д-0,125. Максимальный ток, потребляемый приставкой при измерении емкости полярных конденсаторов на поддиапазоне 200 мкФ, составляет 25...30 мА. На поддиапазоне 20 мкФ он уменьшается примерно в полтора раза, а на остальных составляет 10...12 мА. Диод VD1 предохраняет приставку от подачи напряжения обратной полярности.

Большинство деталей приставки размещено на печатной плате размерами 32(24 мм из одностороннего фольгированного стеклотекстолита, эскиз которой приведен на рис. 2, расстановка элементов - на рис. 3. Плата размещена в металлическом или пластмассовом корпусе. На нем установлены переключатель, кнопка, а также гнезда и разъемы. Остальные детали смонтированы либо на гнездах, либо на переключателе и кнопке навесным монтажом.

Kondansatörlerin kapasitansını ölçmek için multimetreye bağlantı

Kondansatörlerin kapasitansını ölçmek için multimetreye bağlantı

В устройстве можно применить детали: DA2 - М1006ВИ1 (но при этом придется скорректировать печатную плату), диоды - любые импульсные, полярные конденсаторы С1, С2 - групп К50, К52, К53, C3 - К73, С4 - КМ, К10-17. Подстроечные резисторы - СП3-19 или аналогичные, постоянные - МЛТ, С2-33. Кнопка SB1 с самовозвратом (без фиксации) любого типа, например КМ, переключатель - ПГ2 или аналогичный на три направления и не менее восьми положений. Гнезда разъемов Х1, Х2, Х4, Х5 - любые, подходящие к соединительным шнурам, в качестве разъема XS3 была использована половина панельки для микросхемы.

Налаживание приставки проводят совместно с мультиметром, с которым предполагается ее использовать. Потребуются эталонные конденсаторы, емкость которых предварительно измерена с точностью не хуже 1...2 %. Для каждого поддиапазона нужен такой конденсатор с емкостью, соответствующей предельному значению или несколько меньшей. После проверки правильности монтажа и работоспособности приставки ее налаживание начинают с поддиапазона 20 пФ. Для этого подключают эталонный конденсатор и подстроечным резистором R1 добиваются показаний мультиметра (на пределе измерения 200 мВ), соответствующих емкости конденсатора. Аналогичную процедуру проводят на поддиапазоне 200 пФ, но на этот раз с помощью резистора R3. Так же калибруют приставку на следующем поддиапазоне 2000 пФ резистором R5, а на поддиапазоне 0,02 мкФ - резистором R7. Если изменения сопротивления подстроечных резисторов для получения калибровки не хватает, придется изменить сопротивление соответствующего постоянного резистора (R2, R4, R6, R8). После калибровки на указанных пределах измерения движки подстроечных резисторов перемещать уже нельзя.

На поддиапазонах с пределами от 0,2 мкФ до 200 мкФ калибровка приставки осуществляется подбором резисторов R12-R15 соответственно, их размещают непосредственно на переключателе SA1. При этом резисторы R12-R15, возможно, придется составить, по крайней мере, из двух последовательно включенных.

Если настройку проводить тщательно с применением конденсаторов, емкость которых измерена с указанной выше точностью, то погрешность измерения приставки совместно с хорошим мультиметром составит не более 5 %, за исключением первого и восьмого поддиапазонов. На первом поддиапазоне при измерении конденсаторов емкостью менее 5 пФ погрешность возрастает до 20...30% из-за влияния емкости монтажа и диода VD2, но эта погрешность может быть легко учтена. На последнем поддиапазоне из-за влияния выходного сопротивления микросхемы DA2 погрешность также возрастает до 20...30%, но и она поддается учету.

Yazar: I. Nechaev, Kursk

Diğer makalelere bakın bölüm Ölçüm teknolojisi.

Oku ve yaz yararlı bu makaleye yapılan yorumlar.

<< Geri

En son bilim ve teknoloji haberleri, yeni elektronikler:

Optik Sinyalleri Kontrol Etmenin ve Yönetmenin Yeni Bir Yolu 05.05.2024

Modern bilim ve teknoloji dünyası hızla gelişiyor ve her gün bize çeşitli alanlarda yeni ufuklar açan yeni yöntem ve teknolojiler ortaya çıkıyor. Bu tür yeniliklerden biri, Alman bilim adamlarının, fotonik alanında önemli ilerlemelere yol açabilecek optik sinyalleri kontrol etmenin yeni bir yolunu geliştirmesidir. Son araştırmalar, Alman bilim adamlarının erimiş silika dalga kılavuzunun içinde ayarlanabilir bir dalga plakası oluşturmasına olanak sağladı. Sıvı kristal katmanın kullanımına dayanan bu yöntem, bir dalga kılavuzundan geçen ışığın polarizasyonunu etkili bir şekilde değiştirmeye olanak tanır. Bu teknolojik atılım, büyük hacimli verileri işleyebilen kompakt ve verimli fotonik cihazların geliştirilmesi için yeni umutlar açıyor. Yeni yöntemle sağlanan elektro-optik polarizasyon kontrolü, yeni bir entegre fotonik cihaz sınıfının temelini oluşturabilir. Bu, büyük fırsatların önünü açıyor ... >>

Primium Seneca klavye 05.05.2024

Klavyeler günlük bilgisayar işlerimizin ayrılmaz bir parçasıdır. Ancak kullanıcıların karşılaştığı temel sorunlardan biri, özellikle premium modellerde gürültüdür. Ancak Norbauer & Co'nun yeni Seneca klavyesiyle bu durum değişebilir. Seneca sadece bir klavye değil, ideal cihazı yaratmak için beş yıllık geliştirme çalışmasının sonucudur. Bu klavyenin akustik özelliklerinden mekanik özelliklerine kadar her yönü dikkatle düşünülmüş ve dengelenmiştir. Seneca'nın en önemli özelliklerinden biri, birçok klavyede yaygın olan gürültü sorununu çözen sessiz dengeleyicileridir. Ayrıca klavye çeşitli tuş genişliklerini destekleyerek her kullanıcı için kolaylık sağlar. Seneca henüz satışa sunulmasa da yaz sonunda piyasaya sürülmesi planlanıyor. Norbauer & Co'nun Seneca'sı klavye tasarımında yeni standartları temsil ediyor. O ... >>

Dünyanın en yüksek astronomi gözlemevi açıldı 04.05.2024

Uzayı ve onun gizemlerini keşfetmek, dünyanın her yerindeki gökbilimcilerin dikkatini çeken bir görevdir. Şehrin ışık kirliliğinden uzak, yüksek dağların temiz havasında yıldızlar ve gezegenler sırlarını daha net bir şekilde açığa çıkarıyor. Dünyanın en yüksek astronomi gözlemevi olan Tokyo Üniversitesi Atacama Gözlemevi'nin açılışıyla astronomi tarihinde yeni bir sayfa açılıyor. Deniz seviyesinden 5640 metre yükseklikte bulunan Atacama Gözlemevi, uzay araştırmalarında gökbilimcilere yeni fırsatlar sunuyor. Bu site, yer tabanlı bir teleskop için en yüksek konum haline geldi ve araştırmacılara Evrendeki kızılötesi dalgaları incelemek için benzersiz bir araç sağladı. Yüksek rakımlı konum daha açık gökyüzü ve atmosferden daha az müdahale sağlasa da, yüksek bir dağa gözlemevi inşa etmek çok büyük zorluklar ve zorluklar doğurur. Ancak zorluklara rağmen yeni gözlemevi gökbilimcilere geniş araştırma olanakları sunuyor. ... >>

Arşivden rastgele haberler

DNA eklemeden yeni bitkilerin oluşturulması 29.12.2015

Gen naklinin parlak fikri, toplumdan o kadar çok direnç gördü ki, yetiştiriciler, gelişmiş özelliklere sahip bitkileri hızla oluşturmak için geçici çözümler aramak zorunda kaldılar. Bunlardan biri, yabancı DNA kullanmadan genom düzenlemedir. Jin-Soo Kim tarafından yönetilen Güney Kore Temel Bilimler Enstitüsü'nden araştırmacılar, bu yöntemi marul, tütün ve pirinç hücreleri üzerinde test etti.

CRISPR/Cas9 moleküler makasla düzenlendi. Böyle bir tasarım, bitkinin DNA'sını kesin olarak seçilmiş bir yerde keser ve ardından hücre hasarı kendi kendine kapatır ve böylece işaretlenmiş geni dolaşımdan çeker. Yani genoma hiçbir şey eklenmez - sadece bitkinin kendi genini kapatırlar.

Çalışmanın yazarlarına göre, prosedür, zarar görmüş rastgele bir gen değil, önceden seçilmiş bir gen olması dışında, doğada meydana gelen olağan mutajenezden pratik olarak farklı değildir. Düzenlenmiş hücrelerle yapılan deneyler, işlemin başarılı olduğunu gösterdi: çoğalan hücre örneklerinde gen mozaiği yoktu.

Elde edilen tohumlardan, vakaların neredeyse yarısında ve ikinci nesilde düzenlenmiş bitki yetiştirmek mümkün olmuştur. Yabancı DNA içermedikleri için AB kısıtlamalarına tabi değildirler. Ayrıca, teknik nispeten basittir ve küçük tohum çiftliklerinde kullanılabilir, bu da ciddi bir sorunu ortadan kaldırır - transgenik tohumların tekel üreticisine bağımlılık.

Doğru, genom düzenleme o kadar zararsız ve herhangi bir yabancı DNA olmadan olmayabilir. Örneğin, patateslerde, tamamen yenilebilir yumrulara zehirli meyveler eşlik eder. Bir genomları var, hepsi gen aktivitesinin düzenlenmesi ile ilgili. Ve bu düzenleyiciyi yanlış bir şekilde düzenlerseniz, o zaman ...

Diğer ilginç haberler:

▪ Yeni CREE LED'leri

▪ 100 düğüme kadar basit bir kablosuz ağ oluşturmak için TI çözümü

▪ Seagate, Yüksek Hızlı Kurumsal Turbo SSHD Disklerini Tanıttı

▪ Mercedes'te Muz

▪ Mıknatıslar aşka yardımcı olur

Bilim ve teknolojinin haber akışı, yeni elektronik

 

Ücretsiz Teknik Kitaplığın ilginç malzemeleri:

▪ sitenin bölümü Evin elektrikçisi. Makale seçimi

▪ makale Dinler tarihi ve teorisi. Beşik

▪ makale Vergilerin başlangıcı ne zamandı? ayrıntılı cevap

▪ Enstrümantasyon için mekanik makale. İş tanımı

▪ makale Su pompası kontrolü. Radyo elektroniği ve elektrik mühendisliği ansiklopedisi

▪ makale Süper ekonomik alıcı. Radyo elektroniği ve elektrik mühendisliği ansiklopedisi

Bu makaleye yorumunuzu bırakın:

Adı:


E-posta isteğe bağlı):


Yorum:





Bu sayfanın tüm dilleri

Ana sayfa | Kütüphane | Makaleler | Site haritası | Site incelemeleri

www.diagram.com.ua

www.diagram.com.ua
2000-2024