Menü English Ukrainian Rusça Ana Sayfa

Hobiler ve profesyoneller için ücretsiz teknik kütüphane Ücretsiz teknik kütüphane


RADYO ELEKTRONİK VE ELEKTRİK MÜHENDİSLİĞİ ANSİKLOPEDİSİ
Ücretsiz kütüphane / Radyo-elektronik ve elektrikli cihazların şemaları

UMZCH tüpü için çıkış transformatörlerinin imalatı hakkında. Radyo elektroniği ve elektrik mühendisliği ansiklopedisi

Ücretsiz teknik kütüphane

Radyo elektroniği ve elektrik mühendisliği ansiklopedisi / Tüp Güç Amplifikatörleri

makale yorumları makale yorumları

Наблюдается интересная тенденция: чем дальше мы отходим от "ламповой" эпохи, тем больше мифов и тумана создается вокруг выходного трансформатора лампового усилителя. Причем не только в вопросах расчета, но и его изготовления. Производителей понять можно, расхваливание своей продукции - закон рекламы, но и во множестве статей независимых авторов процесс намотки трансформатора смахивает на описание тайного обряда.

Давайте разберемся, насколько это сложно и как много времени на это требуется. Разговор пойдет о выходных трансформаторах для однотактных каскадов, а также о других трансформаторах, где не требуются высокая симметрия полуобмоток и выполнение жестких требований по условиям эксплуатации. Предполагается, что у вас есть достаточного сечения магнитолровод, намоточные провода и хотя бы примитивное приспособление для намотки катушек, снабженное счетчиком витков. Имеется в виду любая конструкция - от электрической или ручной дрели, зажатой в тисках, до согнутой резьбовой шпильки, укрепленной в двух деревянных брусках.

UMZCH lambası için çıkış transformatörlerinin imalatı hakkında

Изготовление катушки - дело кропотливое, но не сложное. Чертеж деталей каркаса сборной катушки из гетинакса или текстолита с защелками показан на рисунке. На чертеже в позиции 1 - щечки; 2, 3 - пластины. Размеры h, b, у, y1и толщина деталей каркаса связаны с размерами и формой магнитопровода. Лучшим материалом для его изготовления можно считать стеклотекстолит (без фольги) толщиной 1,5...2 мм.

При изготовлении деталей оставляйте припуск на окончательную доводку при сборке. Если попытаться сразу выпилить деталь по размеру, то велика вероятность, что ничего защелкиваться не будет, а катушка развалится. У собранной катушки опилите острые углы надфилем и оберните одним-двумя слоями бумаги толщиной 0,1...0,15 мм. На изготовление катушки потребуется два-три часа.

Технологию изготовления трансформатора галетной конструкции затрагивать вообще не будем, поскольку при относительно малом числе галет она проигрывает классической конструкции с неглубоким секционированием и по коэффициенту заполнения, и по индуктивности рассеяния.

Далее начинается более интересное - намотка. Большинство любителей используют рядовую намотку, т. е. провод мотают виток к витку, и через каждый слой укладывают прокладку. Намотать таким образом без станка с укладчиком 3000-4000 витков тонким проводом - титанический труд. Возникает вопрос: а почему не намотать внавал?

Если отбросить благородное возмущение истинных аудиофилов и обратиться к первоисточникам [1, 2], то выяснится, что с коэффициентом заполнения для тонкого провода (0,15-0,4 мм) не так плохо: Г. Цыкин приводит значения 0,7...0,75, у меня получалось 0,5...0,53, что для единичных экземпляров трансформатора с секционированными обмотками вполне допустимо.

Индуктивность рассеяния практически не зависит от способа и плотности намотки. Собственная емкость обмотки (при намотке внавал) получается на 5...10 % меньше. Основной проблемой представляется пониженная электрическая прочность.

Кстати, высокие значения коэффициента заполнения позволяют сделать трансформатор меньше или в тех же габаритах получить большую индуктивность намагничивания. Это важно, так как для высококачественных устройств следует стремиться реализовать трансформатор с минимальными габаритами при заданной индуктивности первичной обмотки. Чем меньше размеры магнитопровода трансформатора, тем лучше - меньше индуктивность рассеяния при заданном секционировании.

Вернемся к обеспечению электрической прочности. В книгах все написано правильно, но большинство рекомендаций относится к серийному производству трансформаторов и соответствию их определенным стандартам. Выполнить трансформатор в соответствии с ними в домашних условиях нереально: нет ни соответствующих материалов, ни технологий. Поэтому будем исходить из двух критериев: первое - реальные условия эксплуатации, второе - неприемлемое в производстве вполне подходит при самостоятельном изготовлении единичных образцов.

Так какое же напряжение может быть на первичной обмотке трансформатора? Допустим, выходная мощность Р усилителя - 5 Вт (это немало для однотактного каскада на распространенных лампах), приведенное к первичной обмотке сопротивление нагрузки R - 2 кОм, напряжение питания Ua - 300 В и КПД трансформатора КПД- 0,85. Чтобы получить такую мощность, действующее напряжение на первичной обмотке должно быть равно:

Urms= √PR/КПД= 117B.

Соответственно его амплитуда будет равна: U rms= √2 Urms = 166 В.

С учетом напряжения питания максимальное напряжение на первичной обмотке относительно корпуса усилителя будет равно:

Uw - U + Ua - 466 В.

Это и определяет требования к межобмоточной изоляции (как правило, один конец вторичной обмотки заземлен) и изоляционным свойствам каркаса. Кабельной бумаги толщиной 0,12 мм достаточно два слоя, можно использовать конденсаторную бумагу в 4-5 слоев либо комбинацию из слоя сантехнической фторопластовой ленты и слоя писчей бумаги. Стеклотекстолитовый каркас с лихвой обеспечивает необходимую электрическую прочность.

Высококачественные выходные трансформаторы всегда выполняют секционированными, иначе не удается получить приемлемые значения индуктивности рассеяния. В простейшем случае первичную обмотку делят на две части, но лучше - на три, между которыми располагают вторичную обмотку. Возможно и более глубокое секционирование, но при этом значительно снижается коэффициент заполнения окна магнитопровода и возрастает емкость между обмотками. Из-за усложнения намотки глубокое секционирование используется довольно редко.

Остановимся на трех секциях первичной обмотки.

Минимум индуктивности рассеяния достигается при неравномерном разделении числа витков - в крайних секциях их число в два раза меньше, чем в средней. Если пренебречь активным сопротивлением обмотки, то в отсутствие сигнала все витки первичной обмотки эквипотенциальны; при максимальной мощности напряжение на частях обмотки будет пропорционально их индуктивности. Следовательно, максимальное переменное напряжение возникает на средней секции обмотки; его амплитуда равна 83 В. Пробивное напряжение изоляции обмоточного провода диаметром более 0,15 мм (ПЭТВ, ПЭВ, ПВТЛ и др.) - не менее 600 В, а число микродефектов допустимо не более 5-7 на 15 м. Для провода диаметром более 0,35 мм микродефекты вообще недопустимы. Поэтому обмотку можно мотать внавал вообще без всяких прокладок; вероятность появления короткозамкнутых витков очень мала.

Для лучшей укладки витков и повышения надежности трансформатора целесообразно через каждые 300-500 витков обмотки укладывать прокладку из конденсаторной бумаги толщиной 0,022 мм в два слоя (такую бумажную ленту можно добыть из старых бумажных конденсаторов - например, группы КБГ). Поэтому основная задача при намотке трансформатора - исключить западание витков.

Межобмоточная изоляция достигается стандартным способом - прокладку делают шире каркаса на 4-5 мм и по ее краям нарезают насечку. Это можно сделать быстро, свернув прокладку в трубку: ее край по контуру прокусывают острыми кусачками. Так как в этом случае используется более толстая и жесткая изоляция (как из условий электрической прочности, так и для возможности нормальной укладки следующей обмотки), западание витков исключено, если вы достаточно внимательны. Желательно исключить западание витков и при укладке межслоевой изоляции. Тут возникают сложности. Так как поверхность обмотки имеет неровности, то даже при наличии насечки на краях прокладки исключить западания витков не удается - провод ее стягивает. Решается этот вопрос следующим образом. На края прокладки накладывается бандаж из узкой полоски тонкой липкой бумаги (можно использовать "малярную ленту") с насечкой по краю, она удерживает прокладку от сползания (или закрывает витки, с которых прокладка уже сползла).

Итак, порядок намотки трансформатора следующий - секции первичной обмотки наматывают внавал с межслоевыми прокладками через каждые 300- 500 витков, секции вторичной обмотки - виток к витку без прокладок (при диаметре провода более 0,6 мм этот процесс сложности не вызывает). Напоминаю еще раз, что межобмоточная изоляция должна быть достаточно жесткой - витки вторичной обмотки должны ложиться ровно. При намотке секций первичной обмотки следует обеспечивать достаточное натяжение провода и стараться, чтобы поверхность обмотки была как можно ровнее. Кстати, при намотке желательно не касаться провода руками, а удерживать его кусочком тонкого фетра или мягкой замши. Намотка ведется от края до края катушки. Выводы обмоток выполняются непосредственно обмоточным проводом с надетой на него фторопластовой трубкой (тонкая трубка прекрасно тянется; растягивая миллиметровую трубочку, можно получить трубку меньшего диаметра). Если провод слишком тонкий, то для повышения механической прочности вывода провод складывают в три-четыре раза и плотно свивают. Эта косичка используется как вывод обмотки, естественно, ее начало должно быть изолировано и надежно закреплено на обмотке. Выводы из цветных проводов, конечно, красивее, но такой вариант практичнее. Конечная изоляция обмоток выполняется из двух слоев кабельной бумаги (можно и писчей).

Коэффициент заполнения окна магнитопровода при двух секциях первичной обмотки находится около 0,45, при трех секциях первичной обмотки - около 0,4. Это усредненные данные по результатам намотки нескольких десятков трансформаторов разной мощности.

Управиться с такой работой, в зависимости от имеющегося опыта, вполне можно за пару вечеров.

Для чего пропитывают катушку трансформатора? Основная цель - повышение электрической прочности при неблагоприятных внешних условиях, также пропитка улучшает отвод тепла из внутренних слоев катушки и повышает ее механическую прочность. Конечно, есть и обратная сторона медали, любая пропитка увеличивает собственную емкость трансформатора.

В 99,9 % случаев любительский усилитель стоит на почетном месте в комнате при практически нормальных условиях. Тепловая нагрузка на выходной трансформатор высококачественного усилителя тоже не велика. Во-первых, проектируются такие трансформаторы по несколько иным критериям, чем сетевые, во-вторых, при прослушивании музыки, даже если усилитель имеет значительную выходную мощность, средняя мощность на выходе составляет всего несколько ватт. Поэтому я не советую использовать какую-либо пропитку и тем самым ухудшать, даже незначительно, электрические параметры трансформатора. Конечно, если вы намерены слушать музыку в условиях тропического климата, планируете установить усилитель в автомобиле или предложить его рок-группе, тогда надо задуматься над пропиточным составом и способом пропитки.

Другое дело - магнитопровод трансформатора. В любительской практике часто используют витые магнитопроводы от серийных трансформаторов, которые гри разборке имеют тенденцию расслаиваться. Это не опасно, но отслоившиеся пластинки будут создавать призвуки. По возможности, их следует подклеить, но это мало что даст. Эффективный способ утихомирить трансформатор (клеить все равно надо) - перед окончательной сборкой окунуть подковы магнитопровода в масляный лак. Шихтованный магнитопровод тоже целесообразно прокрасить лаком.

При окончательной сборке трансформатора таким же лаком промазывают и формирующую немагнитный зазор прокладку (для ШЛ и ПЛ их соответственно три и две), толщина которой задана при расчете. Ее можно изготовить из тонкого листа электрокартона, текстолита, гети-накса или иного жесткого термостойкого материала. Очень важно обеспечить фиксацию зазора в магнитолроводе надежной стяжкой: стабильность зазора способствует минимизации нелинейных искажений самого трансформатора на низких частотах.

Изготовленный таким образом трансформатор будет иметь электрические параметры не хуже, а возможно, и лучше, чем изготовленный в заводском цехе. В условиях, близких к нормальным, такие трансформаторы работают безотказно.

Итак, сложность самостоятельного изготовления выходного трансформатора сильно преувеличена. Основные хлопоты связаны с поиском магнитопровода, намоточных проводов и сопутствуюших материалов, а не с намоткой. Залогом хороших результатов является обычная аккуратность и внимательность. Даже не имея опыта, вполне реально за неделю изготовить комплект выходных трансформаторов для стереоусилителя. Конечно, не все может получиться сразу, но под лежачий камень вода не течет, поэтому смело беритесь за работу и собирайте свой лучший ламповый усилитель.

Замечу, что теперь появилось много современных изоляционных материалов, так что применять бумагу совсем не обязательно. Использование полиэтилентерефталатной, лавсановой пленки, армированного фторопласта, стеклоткани приветствуется; применяйте, что легче достать.

У мощных усилителей возможно появление значительного перепада напряжения на выходном трансформаторе при резком сбросе нагрузки. Если при сравнительных прослушиваниях аппаратуры вы предпочитаете делать коммутацию нагрузки на ходу, то не стоит увеличивать электрическую прочность трансформатора, проще зашунтировать его первичную обмотку подходящим варистором или разрядником на 1 кВ.

Естественно, качество трансформ тора зависит и от применяемого магнитопровода, но не следует возводить это в абсолют. В трансформаторах питания бытовой аппаратуры наиболее часто использовалась электротехническая сталь 3411. Она уступает по своим магнитным свойствам современным сталям (производители часто используют сталь 3408), но эти отличия не настолько велики, чтобы их нельзя было частично компенсировать на этапе проектирования трансформатора. На витом магнитопроводе от сетевого трансформатора можно изготовить отличный выходной трансформатор. И вообще, наблюдается любопытный парадокс. Многие производители предлагают высококачественные выходные трансформаторы, но ограничиваются приведением только их основных параметров - чистый "кот в мешке". А трансформаторы с магнитопроводами из стали 3408 и аморфного сплава - "две большие разницы"!

Edebiyat:

1. Цыкин Г. С. Трансформаторы низкой частоты. - М.: Связьиздат, 1955.
2. Горский А. Н., Русин Ю. С. и др. Расчет электромагнитных элементов источников вторичного электропитания. - М.: Радио и связь. 1988.

Автор: Е. Карпов, г. Одесса, Украина; Публикация: radioradar.net

Diğer makalelere bakın bölüm Tüp Güç Amplifikatörleri.

Oku ve yaz yararlı bu makaleye yapılan yorumlar.

<< Geri

En son bilim ve teknoloji haberleri, yeni elektronikler:

Dokunma emülasyonu için suni deri 15.04.2024

Mesafenin giderek yaygınlaştığı modern teknoloji dünyasında, bağlantıyı ve yakınlık duygusunu sürdürmek önemlidir. Saarland Üniversitesi'nden Alman bilim adamlarının suni derideki son gelişmeleri, sanal etkileşimlerde yeni bir dönemi temsil ediyor. Saarland Üniversitesi'nden Alman araştırmacılar, dokunma hissini uzak mesafelere iletebilen ultra ince filmler geliştirdiler. Bu son teknoloji, özellikle sevdiklerinden uzakta kalanlar için sanal iletişim için yeni fırsatlar sunuyor. Araştırmacılar tarafından geliştirilen sadece 50 mikrometre kalınlığındaki ultra ince filmler tekstillere entegre edilebiliyor ve ikinci bir deri gibi giyilebiliyor. Bu filmler anne veya babadan gelen dokunsal sinyalleri tanıyan sensörler ve bu hareketleri bebeğe ileten aktüatörler gibi görev yapar. Ebeveynlerin kumaşa dokunması, basınca tepki veren ve ultra ince filmi deforme eden sensörleri etkinleştirir. Bu ... >>

Petgugu Global kedi kumu 15.04.2024

Evcil hayvanların bakımı, özellikle evinizi temiz tutmak söz konusu olduğunda çoğu zaman zorlayıcı olabilir. Petgugu Global girişiminin, kedi sahiplerinin hayatını kolaylaştıracak ve evlerini mükemmel şekilde temiz ve düzenli tutmalarına yardımcı olacak yeni ve ilginç bir çözümü sunuldu. Startup Petgugu Global, dışkıyı otomatik olarak temizleyerek evinizi temiz ve ferah tutan benzersiz bir kedi tuvaletini tanıttı. Bu yenilikçi cihaz, evcil hayvanınızın tuvalet aktivitesini izleyen ve kullanımdan sonra otomatik olarak temizlemeyi etkinleştiren çeşitli akıllı sensörlerle donatılmıştır. Cihaz, kanalizasyon sistemine bağlanarak, sahibinin müdahalesine gerek kalmadan verimli atık uzaklaştırılmasını sağlar. Ek olarak, tuvaletin büyük bir sifonlu depolama kapasitesi vardır, bu da onu çok kedili evler için ideal kılar. Petgugu kedi kumu kabı, suda çözünebilen kumlarla kullanılmak üzere tasarlanmıştır ve çeşitli ek özellikler sunar. ... >>

Bakımlı erkeklerin çekiciliği 14.04.2024

Kadınların "kötü çocukları" tercih ettiği klişesi uzun zamandır yaygın. Ancak Monash Üniversitesi'nden İngiliz bilim adamlarının son zamanlarda yaptığı araştırmalar bu konuya yeni bir bakış açısı sunuyor. Kadınların, erkeklerin duygusal sorumluluklarına ve başkalarına yardım etme isteklerine nasıl tepki verdiklerini incelediler. Araştırmanın bulguları, erkekleri kadınlar için neyin çekici kıldığına dair anlayışımızı değiştirebilir. Monash Üniversitesi'nden bilim adamlarının yürüttüğü bir araştırma, erkeklerin kadınlara karşı çekiciliği hakkında yeni bulgulara yol açıyor. Deneyde kadınlara, evsiz bir kişiyle karşılaştıklarında verdikleri tepkiler de dahil olmak üzere çeşitli durumlardaki davranışları hakkında kısa öykülerin yer aldığı erkeklerin fotoğrafları gösterildi. Erkeklerden bazıları evsiz adamı görmezden gelirken, diğerleri ona yiyecek almak gibi yardımlarda bulundu. Bir araştırma, empati ve nezaket gösteren erkeklerin, kadınlar için empati ve nezaket gösteren erkeklere göre daha çekici olduğunu ortaya çıkardı. ... >>

Arşivden rastgele haberler

Şurupta yüzme sorunu 12.01.2005

Üç yüz yıldan fazla bir süre önce, ünlü eseri "Doğa Felsefesinin Matematiksel İlkeleri"nin yayınlanmasına hazırlanan Isaac Newton, Christian Huygens ile şurupta yüzmenin suda yüzmekten daha mı kolay yoksa daha mı zor olacağı konusunda tartıştı.

Ellerinde ne bir yüzme havuzu ne de yeterince şeker bulunan fizikçiler, teorik bir tartışmayla yetindiler. Newton, viskoz bir sıvıda yüzmenin daha zor olduğunu savundu ve Huygens, ortamın direncinin daha yüksek olmasına rağmen yüzücünün pervaneleri için daha fazla destek sağlayacağında ısrar etti - kollar ve bacaklar, bu da itme kuvvetinin de aynı zamanda olacağı anlamına gelir. daha yüksek. Araştırmacılar tek bir sonuca varmadılar ve Newton her iki versiyonu da çalışmasına dahil etti.

Çağımızda, Minnesota Üniversitesi'nde (ABD) çalışan fizikçi Edward Cussler, uzun süredir devam eden bir anlaşmazlığı çözmeyi başardı. Üniversitenin 25 metrelik yüzme havuzuna 300 kilogramdan fazla guar sakızı attı.

Tropikal bir baklagilden elde edilen bu madde mayonez, dondurma, şampuan ve diğer gıda ve güzellik ürünlerinde koyulaştırıcı olarak kullanılır. Havuzdaki su balçık haline geldi. Profesyonel yüzücüler de dahil olmak üzere 16 gönüllü, suyun iki katı kalınlığındaki bu sıvıya fırlatıldı.

Huygens'in haklı olduğu ortaya çıktı. Saf suda ve mukusta yüzme hızındaki fark yüzde dörtten fazla değildi. Ancak Kassler, yüzen cismin boyutunun burada da önemli olduğuna inanıyor. Bakteriler daha viskoz bir sıvıda suya göre daha yavaş yüzmelidir.

Fizikçilerin deneyi gerçekleştirmeden önce 22 yetkiliden izin almaları gerekiyordu, buna deneyden sonra mukusu boşaltma izni de dahildi.

Diğer ilginç haberler:

▪ Strafor yediği tespit edilen böcekler

▪ Keychron Lemokey L3 Premium Klavye

▪ Hidrojen scooter

▪ Xiaomi Mi Okuyucu Pro e-kitap

▪ Kameranın lense ihtiyacı yok

Bilim ve teknolojinin haber akışı, yeni elektronik

 

Ücretsiz Teknik Kitaplığın ilginç malzemeleri:

▪ sitenin bölümü Çocuklar ve yetişkinler için büyük ansiklopedi. Makale seçimi

▪ makale Boru kürek. Çizim, açıklama

▪ İlkel komünal sistemin ayrışma aşamaları nelerdi? Ayrıntılı cevap

▪ makale Arabaların veya bir arabanın ve bir römorkun (yarı römork) çekilmesi ve ayrılması. İş güvenliği ile ilgili standart talimat

▪ makale LPT bağlantı noktasının başka bir ömrü. Bölüm 3. Radyo elektroniği ve elektrik mühendisliği ansiklopedisi

▪ makale Bir bilgisayar PSU'su bazında bellekteki şarj işleminin göstergesi. Radyo elektroniği ve elektrik mühendisliği ansiklopedisi

Bu makaleye yorumunuzu bırakın:

Adı:


E-posta isteğe bağlı):


Yorum:





Bu sayfanın tüm dilleri

Ana sayfa | Kütüphane | Makaleler | Site haritası | Site incelemeleri

www.diagram.com.ua

www.diagram.com.ua
2000-2024