Menü English Ukrainian Rusça Ana Sayfa

Hobiler ve profesyoneller için ücretsiz teknik kütüphane Ücretsiz teknik kütüphane


RADYO ELEKTRONİK VE ELEKTRİK MÜHENDİSLİĞİ ANSİKLOPEDİSİ
Ücretsiz kütüphane / Radyo-elektronik ve elektrikli cihazların şemaları

TV Elektroniği VL-100. Radyo elektroniği ve elektrik mühendisliği ansiklopedisi

Ücretsiz teknik kütüphane

Radyo elektroniği ve elektrik mühendisliği ansiklopedisi / TV

makale yorumları makale yorumları

Переносной телевизор "Электроника ВЛ-100" предназначен для приема телевизионных передач как дома, так и на улице, за городом, в автомобиле на выдвижную телескопическую антенну. Его кинескоп имеет экран с размером по диагонали 16 см и отклонением электронного луча на угол 70°. Питание телевизора осуществляется от сети переменного тока с напряжением 127/220 в или от источника постоянного напряжения 12 в. В телевизоре предусмотрены гнезда для подключения кабеля снижения наружной антенны, головных телефонов, магнитофона и дополнительного усилителя НЧ. Технические характеристики телевизора сведены в табл. 1.

Tablo 2
Görüntü boyutu 100x125 mm
Четкость по горизонтали 450 линий
Чувствительность по каналам изображения и звука 100 мкв
Избирательность по соседним каналам-не хуже 26 dB
Номинальная звуковая мощность 150 мвт
Потребляемая мощность от аккумулятора 5 watt
Размеры телевизора 145Х170X200 мм
Вес (без сетевого блока питания) 2,8 kg

Схема телевизора приведена на рис. 1

На входе телевизора установлен 12-канальный модернизированный блок ПТК-П. Он отличается от описанного в "Радио", 1966, № 1, стр. 21, блока ПТК-П схемой включения транзистора каскада усиления ВЧ. Регулирующее напряжение АРУ подается на базу транзистора этого каскада и при увеличении сигнала на входе телевизора смещает его рабочую точку в сторону насыщения.

В телевизоре применен сравнительно простой и легко регулируемый трехкаскадный усилитель ПЧ изображения, на входе которого включен пятиконтурный фильтр сосредоточенной селекции (ФСС). Первый и второй каскады усилителя ПЧ, собранные на транзисторах T1,T2, нагружены одиночными контурами, имеют широкую полосу пропускания и охвачены АРУ. Режекция несущей ПЧ звукового сопровождения (31,5 МГц) осуществляется при помощи контура L10C15, включенного в цепь базы транзистора Т3.

Третий каскад усилителя (транзистор Т3) нагружен полосовым фильтром L11C18, L12C21 с внешней емкостной связью через конденсатор C19. Этот фильтр совместно с ФСС обеспечивает необходимую избирательность и форму частотной характеристики.

Нейтрализация внутренней обратной связи в транзисторах первых двух каскадов осуществляется подачей напряжения с катушек связи L7 и L9 на базы транзисторов T1i и Т2 через конденсаторы С7, и С11. Напряжение нейтрализации в третьем каскаде снимается с резистора R20 и подается на базу транзистора Т3 через конденсатор С16.

Усилитель ПЧ изображения имеет максимальный коэффициент усиления около 70 дб. Выбранная схема его обеспечивает достаточно широкую полосу пропускания и удовлетворительную фазовую характеристику.

Видеодетектор телевизора собран на диоде Д1 по стандартной схеме. Нагрузкой видеодетектора служит резистор R22. На выходе видеодетектора установлен П-образный фильтр С22Др1С23. Дроссель этого фильтра одновременно предназначен для корректировки частотной характеристики видеоусилителя.

С видеодетектора сигнал поступает на первый каскад видеоусилителя, собранный на транзисторе Т4 по схеме эмиттерного повторителя для согласования высокого выходного сопротивления видеодетектора с малым входным сопротивлением видеоусилителя.

Между первым и вторым каскадами видеоусилителя включен режекторный контур L13С25, настроенный на частоту 6,5 МГц, с которого снимаются сигналы звукового сопровождения на усилитель ПЧ. Второй каскад видеоусилителя выполнен на транзисторе Т5, включенном по схеме с общим эмиттером и сложной коррекцией частотной характеристики. С видеоусилителя сигналы положительной полярности подаются на катод кинескопа, устройство АРУ и селектор узла синхронизации. Непосредственная связь по постоянному току между нагрузкой видеодетектора и катодом кинескопе обеспечивает передачу постоянной составляющей видеосигнала. Регулировка контрастности изображения осуществляется путем изменения напряжения видеосигнала на катоде кинескопа с помощью потенциометра R35. Искажения частотной характеристики, которые появляются при таком способе регулировки контрастности, компенсируются при помощи конденсаторов С30 и С31. Видеоусилитель имеет коэффициент усиления не менее 70 при полосе пропускания 4,75-5 МГц.

Устройство АРУ содержит два каскада: ключевой каскад на транзисторе Т6 и усилитель постоянного тока на транзисторе Т7. На базу транзистора Т6 подается отрицательное напряжение задержки 5-6 в. Он откроется лишь в том случае, если уровень сигнала, снимаемого с видеоусилителя, превысит пороговое значение задержки, и одновременно на коллектор этого транзистора поступят положительные импульсы обратного хода с вывода в выходного трансформатора строчной развертки, совпадающие по частоте и фазе с синхроимпульсами. Транзистор Т7 усилителя постоянного тока включен по схеме с общим эмиттером. Он присоединен к ключевому каскаду через двухзвенный фильтр С35 R45 и С36 R47, определяющий постоянную времени АРУ. При отсутствии сигнала или при слабом сигнале транзистор T7 закрыт и не вызывает изменения напряжения, а следовательно, и тока в цепях АРУ. При превышении сигналом порога задержки этот транзистор, как и T6, открывается и на выходе каскада появится положительное управляющее напряжение АРУ.

Канал звукового сопровождения телевизора состоит из двух резонансных каскадов усилителя ПЧ звука на транзисторах Т8 и T9, включенных в схеме с общим эмиттером, частотного детектора отношении на диодах Д2, Д3 и усилителя низкой частоты на транзисторах T10-Т12.

Для получения максимального усиления по ПЧ нагрузочные контуры L15C40 и L17C43 включены в коллекторные цепи транзисторов Т8, T9 полностью. Резисторы R49, R53, R56, R58 служат для предотвращения самовозбуждения усилителя ПЧ. Детектор отношений собран по симметричной cхеме. Такой детектор более прост в настройке и лучше подавляет паразитную амплитудную модуляцию. Усилитель НЧ особенностей не имеет. Его выходная мощность - 150 мвт. Он нагружен двумя громкоговорителями 0,1ГД6.

Узел синхронизации состоит из трех каскадов: амплитудного селектора (транзистор T21), фазоинвертора (Т22) и буферного усилителя кадровых синхроимпульсов (Т13). С амплитудного селектора строчные синхроимпульсы после дифференцирования поступают в фазоинвертер, на выходах которого выделяются строчные синхроимпульсы обоих полярностей с амплитудой около 5 в. Эти импульсы поступают в систему АПЧ и Ф, собранную на диодах Д4, Д5. Кадровые синхроимпульсы отделяются от строчных в двухзвенном интегрирующем фильтре R101С62, R100C61 и усиливаются в буферном каскаде. С выхода этого каскада синхросигналы в отрицательной полярности поступают на задающий генератор кадровой развертки.

Узел строчной развертки состоит из трех каскадов: задающего генератора на транзисторе T23, предварительного каскада усиления (Т24) и выходного каскада (Т25). Задающий генератор строчной развертки выполнен по схеме блокинг-генератора с эмиттерно-базовой связью. Такой генератор имеет высокое входное сопротивление, которое необходимо для нормальной работы АПЧ и Ф. Пилообразные импульсы снимаются с точки соединения резисторов нагрузки R113 и R114 в коллекторной цепи транзистора Т23. Благодаря такому присоединению к генератору предварительного каскада усиления исключается влияние его изменяющегося входного сопротивления на работу блокинг-генератора. Длительность пилоообразных импульсов в значительной мере определяется сопротивлениями резисторов R11, R113 и R114. От двух последних зависит также частота импульсов.

Предварительный каскад усиления блока строчной развертки (Т24) работает в ключевом режиме и выполняет функции усилителя мощности. Транзистор Т24 имеет проводимость, обратную проводимости транзистора Т23. Во время прямого хода развертки этот транзистор закрыт. Он открывается импульсами положительной полярности, поступающими с блокинг-генератора. Далее через согласующий трансформатор Тр4 импульсный сигнал без постоянной составляющей поступает на базу транзистора Т25 выходного каскада строчной развертки. Этот каскад работает в режиме двухстороннего ключа и нагружен выходным строчным трансформатором, непосредственно к которому подключены строчные катушки отклоняющей системы. Для прохождения постоянной составляющей коллекторного тока транзистор T25 подключен к источнику питания через обмотку строчного трансформатора.

Во время прямого хода строчной развертки транзистор Т25, находится в насыщении и способен пропустить через выходной строчный трансформатор Тр5 и отклоняющие строчные катушки большой ток. В начале обратного хода на базу транзистора через согласующий трансформатор подается положительный прямоугольный импульс с малым временем переднего фронта, который быстро запирает транзистор. Положительный импульс напряжения, возникающий в строчном трансформаторе во время обратного хода луча, используется для получения напряжения питания второго анода кинескопа (9 кв), ускоряющего и фокусирующего электродов (500 в), напряжения накала кинескопа (1,35 в), питания транзистора T5 (80 в) и других вспомогательных напряжений. В качестве демпфера используется диод Д6.

Узел кадровой развертки выполнен по бестрансформаторной схеме. Задающий генератор собран на транзисторах Т14, T15, T16 по схеме мультивибратора с эмиттерной связью. В этом каскаде осуществлено сочетание генератора линейно изменяющегося напряжения с нелинейным сопротивлением (транзистор T16) и релаксационным генератором (транзисторы Т14 и T15). Размах пилообразного напряжения на выходе задающего генератора почти равен напряжению питания.

В качестве выходного каскада кадровой развертки применен двухтактный усилитель мощности класса "В" на двух составных транзисторах (T17-T19 и T18-T20). Характерное для класса "Д" нелинейное искажение типа "ступенька" устранено путем подбора напряжения смещения на базах транзисторов.

Питание телевизора "Электроника ВЛ-100" от сети переменного тока осуществляется через стабилизированный выпрямитель с выходным напряжением +10,5 в относительно корпуса телевизора. Выносной сетевой блок состоит из малогабаритного силового трансформатора (Тр6), выпрямительного моста (Д14 - Д17) и конденсатора фильтра (С95). Для стабилизации размеров растра и параметров телевизора при работе от источника постоянного напряжения или генератора автомобиля стабилизатор напряжения конструктивно размещен непосредственно в корпусе телевизора. Он выполнен на транзисторе T26 (управляющий каскад), Т27 (проходной каскад) и опорном диоде Д13. На стабилизатор через делитель R131-R134 от специального выпрямителя Д12С80 подается отрицательное напряжение - 50 в, вырабатываемое в блоке строчной развертки. Это напряжение задает рабочий режим для регулирующего транзистора Т26. Особенностью стабилизатора является зависимость режима работы проходного транзистора Т27 от напряжения - 50 в, поступающего на базу транзистора T26. Это позволяет защитить транзистор Т25, выходного каскада строчной развертки, а также транзистор Т27 от пробоя. Стабилизатор поддерживает постоянным выходное напряжение выпрямителя при изменении напряжения питающей сети в пределах ±10%. Он имеет коэффициент пульсации не более 100 мв. В схеме выпрямителя предусмотрена колодки для зарядки 12-вольтовой переносной аккумуляторной батареи. Аккумулятор может заряжаться одновременно с просмотром телевизионных передач.

Конструктивно телевизор "Электроника ВЛ-100" состоит из нескольких функциональных блоков. Две основные печатные платы - плата приемников и плата разверток расположены вертикально по обе стороны кинескопа, а третья плата со вспомогательными выпрямителями и блоком ПТК-П - сверху. Все три платы откидные и прикреплены к несущей раме с помощью шарниров. Телевизор имеет легкосъемный металлический футляр, при снятии которого открывается доступ ко всему монтажу. На верхней стенке футляра укреплена ручка со встроенной телескопической шарнирной антенной. Экран кинескопа занимает всю площадь передней панели. Громкоговорители 0,1ГД6 расположены снизу телевизора в рупорной акустической системе.

Моточные данные контурных катушек телевизора сведены в табл. 2, а трансформаторов - в табл. 3.

Tablo 2
Şema tanımı dönüş sayısı Провод: марка и диаметр, лис
L1 25 0,2
L2 10 "
L3 15 "
L4 35 "
L5 25 "
L6 15 "
L7 5 "
L8 15 "
L9 5 "
L10 35 "
L11 20 0,35
L12 20 "
L13 15 0.2
L14 10 "
L15 31 "
L16 6 "
L17 35 0.1
L18 18h2 ЛЭШО 7х0.07
L19 15 0.1
L20 650 PEV 0,13

Все катушки наматывают на каркасах диаметром 6 мм в один слой (исключая L20), виток к витку (L17 и L19 на одном каркасе, L18 - в два провода), и настраивают подстроечныии сердечниками СБ-12а (СБ-1а), за исключением L20, для которой применен ферритовый сердечник типа КНФ-13.

Tablo 3
Atama Çekirdek NN выводов dönüş sayısı Tel: marka ve çap, mm
TR1 Пермаллой 45Н Ш4х5 1-2
3-4
4-5
2100
290
290
PEV-1 0,06
PEV-1 0,06
PEV-1 0.06
TR2 aynı 1-2
3-4
4-5
450
450
80
PEV-1 0,09
PEV-1 0,09
PEV-1 0,23
TR3 Оксифер М1500НМ тип Б14 1-2
3-4
500
100
PEV-1 0,08
PEV-1 0,08
TR4 aynı 1-2
3-4
250
50
PEV-1 0,08
PEV-1 0,23
TR5 Оксифер М2000НМ Ш 7х7 1-3
3-2
2-6
6-4
4-5
5-7
25
5
10
36
600
2700
PEV-2 0,15
PEV-2 0,35
PEV-2 0,35
PEV-2 0,35
PEV-2 0,05
PEV-2 0,05
TR6 Сталь 3310 ШЛ 12Х20 1-2
2-3
4-5
1607
1160
175
PEV-1 0,22
PEV-1 0,15
PEV-1 0,64
ДР1 Оксифер М1500НМ тип Б14 120 PEV-2 0,12
Dr2 Феррит 600НН длина 40 мм, диаметр 4 мм (от РЛС-70) 60 PEV-2 0,23

Авторы: Л.Кисин, Г.Садовская, В.Утешев; Публикация: Н. Большаков, rf.atnn.ru

Diğer makalelere bakın bölüm TV.

Oku ve yaz yararlı bu makaleye yapılan yorumlar.

<< Geri

En son bilim ve teknoloji haberleri, yeni elektronikler:

Bahçelerdeki çiçekleri inceltmek için makine 02.05.2024

Modern tarımda, bitki bakım süreçlerinin verimliliğini artırmaya yönelik teknolojik ilerleme gelişmektedir. Hasat aşamasını optimize etmek için tasarlanan yenilikçi Florix çiçek seyreltme makinesi İtalya'da tanıtıldı. Bu alet, bahçenin ihtiyaçlarına göre kolayca uyarlanabilmesini sağlayan hareketli kollarla donatılmıştır. Operatör, ince tellerin hızını, traktör kabininden joystick yardımıyla kontrol ederek ayarlayabilmektedir. Bu yaklaşım, çiçek seyreltme işleminin verimliliğini önemli ölçüde artırarak, bahçenin özel koşullarına ve içinde yetişen meyvelerin çeşitliliğine ve türüne göre bireysel ayarlama olanağı sağlar. Florix makinesini çeşitli meyve türleri üzerinde iki yıl boyunca test ettikten sonra sonuçlar çok cesaret vericiydi. Birkaç yıldır Florix makinesini kullanan Filiberto Montanari gibi çiftçiler, çiçeklerin inceltilmesi için gereken zaman ve emekte önemli bir azalma olduğunu bildirdi. ... >>

Gelişmiş Kızılötesi Mikroskop 02.05.2024

Mikroskoplar bilimsel araştırmalarda önemli bir rol oynar ve bilim adamlarının gözle görülmeyen yapıları ve süreçleri derinlemesine incelemesine olanak tanır. Bununla birlikte, çeşitli mikroskopi yöntemlerinin kendi sınırlamaları vardır ve bunların arasında kızılötesi aralığı kullanırken çözünürlüğün sınırlandırılması da vardır. Ancak Tokyo Üniversitesi'ndeki Japon araştırmacıların son başarıları, mikro dünyayı incelemek için yeni ufuklar açıyor. Tokyo Üniversitesi'nden bilim adamları, kızılötesi mikroskopinin yeteneklerinde devrim yaratacak yeni bir mikroskobu tanıttı. Bu gelişmiş cihaz, canlı bakterilerin iç yapılarını nanometre ölçeğinde inanılmaz netlikte görmenizi sağlar. Tipik olarak orta kızılötesi mikroskoplar düşük çözünürlük nedeniyle sınırlıdır, ancak Japon araştırmacıların en son geliştirmeleri bu sınırlamaların üstesinden gelmektedir. Bilim insanlarına göre geliştirilen mikroskop, geleneksel mikroskopların çözünürlüğünden 120 kat daha yüksek olan 30 nanometreye kadar çözünürlükte görüntüler oluşturmaya olanak sağlıyor. ... >>

Böcekler için hava tuzağı 01.05.2024

Tarım ekonominin kilit sektörlerinden biridir ve haşere kontrolü bu sürecin ayrılmaz bir parçasıdır. Hindistan Tarımsal Araştırma Konseyi-Merkezi Patates Araştırma Enstitüsü'nden (ICAR-CPRI) Shimla'dan bir bilim insanı ekibi, bu soruna yenilikçi bir çözüm buldu: rüzgarla çalışan bir böcek hava tuzağı. Bu cihaz, gerçek zamanlı böcek popülasyonu verileri sağlayarak geleneksel haşere kontrol yöntemlerinin eksikliklerini giderir. Tuzak tamamen rüzgar enerjisiyle çalışıyor, bu da onu güç gerektirmeyen çevre dostu bir çözüm haline getiriyor. Eşsiz tasarımı, hem zararlı hem de faydalı böceklerin izlenmesine olanak tanıyarak herhangi bir tarım alanındaki popülasyona ilişkin eksiksiz bir genel bakış sağlar. Kapil, "Hedef zararlıları doğru zamanda değerlendirerek hem zararlıları hem de hastalıkları kontrol altına almak için gerekli önlemleri alabiliyoruz" diyor ... >>

Arşivden rastgele haberler

Kayıt kararlılığına sahip lazer 06.02.2022

BACON (Boulder Atomik Saat Optik Ağı) projesinin arkasındaki bilim adamları, birbirine bağlı atom saatlerinden oluşan küresel bir ağ kuruyorlar ve yakın zamanda bugüne kadarki en yüksek kararlılık rekorunu elde eden yeni bir lazer sistemini test ettiler. Bir dizi yenilik ve mühendislik çözümünün kullanılmasıyla, bu lazer sisteminin ışını, açık havada 2,4 kilometrelik bir mesafeyi kat ederek kararlılığını korumayı başardı. Bu lazer sisteminin dalga boyu, faz ve genlik kararlılığı, daha önce oluşturulmuş benzer sistemlerden en az 100 kat daha fazladır ve bu tür lazer iletişimi kullanılarak bağlanacak ve senkronize edilecek olan atom saatinin kendisinin kararlılığından 1000 kat daha fazladır.

Küresel bir atomik saat ağının oluşturulması nihayetinde başarılı olursa, bilim insanlarına fiziğin bazı temel yasalarını test etmek, karanlık maddeyi incelemek, yüksek hassasiyetli navigasyon sistemleri oluşturmak vb. için son derece hassas bir araç sağlayacaktır. Bunu yaratmanın koşullarından biri, saat senkronizasyonu sağlayabilen lazer iletişiminin varlığıdır, yani. bu bağın kararlılığı bir atom saatinden çok daha yüksek olmalıdır. Ayrıca, böyle bir bağlantı, kendi içinde oldukça zor bir iş olan açık havada çalışmalıdır.

Deneyler sırasında bilim adamları, 1.2 kilometrelik bir mesafeye ayarlanmış bir reflektöre bir lazer ışını "vuruyorlardı" ve kaynağa geri dönen ışığın parametrelerini analiz ettiler. En yüksek stabilite göstergeleri 5 dakika boyunca tutuldu, bundan sonra sistemin ek ayarlaması ve yeniden kalibrasyonu gerekliydi. Ancak beş dakika, binlerce, hatta milyonlarca yüksek doğrulukta ölçümün yapılabileceği yeterince uzun bir süredir.

Deney için 2,4 kilometrelik mesafe tesadüfen seçilmedi. Hesaplamalara göre, Dünya yüzeyine bu kadar yakın bir mesafedeki atmosferik bozulma ve türbülans miktarı, yüzeyden düşük Dünya yörüngesine yönlendirilen bir lazer ışınına etki edecek miktara karşılık gelir, çünkü atmosferin üst katmanlarındaki hava daha incedir ve daha "sakin bir karaktere" sahiptir. Ve yeni gürültü azaltma yöntemleri, termal genleşmenin kontrolü ve reflektörün konumunun düzenlenmesi, salınan havanın "ceplerinden" geçen lazer ışınının stabilitesini korumayı mümkün kıldı.

Kararlılığın iyileştirilmesine katkıda bulunan bir diğer faktör, darbeli bir lazer yerine sürekli bir ışık demeti yayan bir lazerin kullanılmasıydı. Bu iki lazer türünün farklı uygulamalarda avantajları ve dezavantajları vardır, ancak uygulamanın gösterdiği gibi, sürekli bir lazer hala daha iyi stabilite sağlayabilir ve ayrıca birim zaman başına daha fazla bilgi iletebilir.

Diğer ilginç haberler:

▪ Ahşap alerjiye neden olabilir

▪ Minyatür SMD Kızılötesi Anahtar

▪ Evde yedek güç kaynağı olarak elektrikli araba

▪ Avrupa'da modern rüzgar enerjisi

▪ LG Minibeam TV LED Projektör

Bilim ve teknolojinin haber akışı, yeni elektronik

 

Ücretsiz Teknik Kitaplığın ilginç malzemeleri:

▪ Sitenin radyo amatörlerine yönelik bölümü. Makale seçimi

▪ makale Köle Rusya gördüm. Popüler ifade

▪ makale Hangi ülkenin posta pullarını imzalamama hakkı vardır? ayrıntılı cevap

▪ Duryan makalesi. Efsaneler, yetiştirme, uygulama yöntemleri

▪ makale Biyoyakıt yakma tesisleri. Akışkan yataklı kazanlar. Radyo elektroniği ve elektrik mühendisliği ansiklopedisi

▪ makale Bir şişede kaybolmak. Odak Sırrı

Bu makaleye yorumunuzu bırakın:

Adı:


E-posta isteğe bağlı):


Yorum:





Bu sayfanın tüm dilleri

Ana sayfa | Kütüphane | Makaleler | Site haritası | Site incelemeleri

www.diagram.com.ua

www.diagram.com.ua
2000-2024