Menü English Ukrainian Rusça Ana Sayfa

Hobiler ve profesyoneller için ücretsiz teknik kütüphane Ücretsiz teknik kütüphane


RADYO ELEKTRONİK VE ELEKTRİK MÜHENDİSLİĞİ ANSİKLOPEDİSİ
Ücretsiz kütüphane / Radyo-elektronik ve elektrikli cihazların şemaları

Цифровой ревербератор. Энциклопедия радиоэлектроники и электротехники

Ücretsiz teknik kütüphane

Radyo elektroniği ve elektrik mühendisliği ansiklopedisi / Dijital teknoloji

makale yorumları makale yorumları

В последние годы благодаря появлению необходимой элементной базы стало возможным реализовать эффект реверберации электронным способом, позволяющим существенно повысить качественные и эксплуатационные характеристики ревербератора, уменьшить его габариты и потребляемую мощность.

Как известно, ревербератор представляет собой устройство задержки аналогового звукового сигнала. В электронных ревербераторах функции линии задержки выполняет N-разрядный сдвиговый регистр, на вход которого подают цифровой эквивалент входного аналогового сигнала, преобразованного аналого-цифровым преобразователем (АЦП), а к выходу подключают аналоговый преобразователь (ЦАП), восстанавливающий вновь аналоговый сигнал из цифрового эквивалента.

Выходной код АЦП может быть как параллельным, так и последовательным. При параллельном коде необходимо предусматривать задержку сигналов каждого разряда, что приводит к увеличению числа регистров сдвига в К раз, где К - число разрядов АЦП. При последовательном коде линию задержки выполняют на одном регистре сдвига, однако на его выходе необходимо включать преобразователь последовательного кода в параллельный, если выходной ЦАП обрабатывает параллельный кол. Время задержки в первом случае будет определяться отношением числа разрядов регистра сдвига к тактовой частоте, а во втором - произведением числа разрядов регистра на время формирования К-разрядного последовательного кода. Оба эти метода сравнительно сложны в реализации, так как для получения хорошего качества задержанного сигнала необходимо сравнительно большое число разрядов цифровых кодов, а это требует применения сложных АЦП, ЦАП и фильтров НЧ высоких порядков на входе и выходе устройства.

Более простым способом получения из аналогового сигнала цифровой последовательности, которая может быть задержана регистром сдвига, является дельта-модуляция, позволяющая преобразовывать в цифровую форму не значение сигнала в текущий момент, а его изменение по отношению к предыдущему.

Структурная схема дельта-модулятора показана на рис. 1, а. ФНЧ ограничивает спектр входного аналогового сигнала перед подачей на вход модулятора. Сумматор формирует разность двух сигналов: входного и восстановленного выходного. В зависимости от знака мгновенного значения этой разности компаратор выдает либо логический уровень 0, либо 1, т. е. выходной сигнал модулятора представляет собой последовательность импульсов с непостоянными длительностью и скважностью. Для подачи на вход сумматора эту последовательность пропускают через канал восстановления, содержащий формирователь импульсов и интегратор.

dijital yankı
Pirinç. 1 (büyütmek için tıklayın)

Демодулятор (рис. 1, б) представляет собой по сути аналог канала восстановления модулятора. Важной особенностью системы дельта-модулятор - демодулятор является обязательность идентичности каналов восстановления.

На рис. 2 показана в упрощенном виде форма сигналов в характерных точках модулятора: А - входной сигнал u(t) и восстановленный u*(t), подводимые к сумматору, Б - разностный выходной сигнал сумматора, В - сигнал с выхода компаратора, Г - сигнал, поступающий на вход интегратора. Из рис. 2 видно, что для улучшения аппроксимации входного сигнала необходимо увеличить тактовую частоту. Однако в ревербераторе для того же времени задержки это потребовало бы увеличения "длины" регистра сдвига, включенного между модулятором и демодулятором, а также применения более быстродействующих элементов.

dijital yankı
Şek. 2

Вместе с этим анализ показывает, что улучшения аппроксимации можно добиться и не изменяя тактовой частоты. Необходимо лишь в зависимости от крутизны кривой сигнала в какой-либо точке (а значит, и от ширины его спектра) соответственно изменять величину Д. т. е. изменять крутизну аппроксимирующего сигнала. Изменять А можно изменением либо постоянной интегрирования интегратора, либо амплитуды импульсов, подводимых к нему.

В описываемом ниже ревербераторе использовано изменение постоянной интегрирования. В качестве переменного резистора применен полевой транзистор, управляемый напряжением, поступающим с пассивной интегрирующей цепи, на которую подан сигнал с элемента "ИСКЛЮЧАЮЩЕЕ ИЛИ". Иными словами, дельта-модулятор преобразует в цифровую последовательность не сам сигнал, а его производную, из которой интегрированием на выходе можно восстанавливать исходный сигнал. О дельта-модуляции и ее применении можно прочитать в [I, 2, 3].

Описанный ниже цифровой ревербератор основан на принципе адаптивной дельта-модуляции и может быть применен как в виде функционального узла ЭМИ и ЭМС, так и самостоятельного устройства для реализации эффектов реверберации и эха в любительских ансамблях. Интересно его применение и в бытовом радиокомплексе для имитации большого помещения.

Структурная схема ревербератора показана на рис.3. Входной сумматор складывает входной сигнал с частью задержанного, что позволяет получить эффект многократного отражения звука. Модулятор преобразует его в цифровую последовательность, которую М-разрядный регистр сдвига задерживает на время Тз. Это время, а значит, и время реверберации (эха) можно определить по формуле: Тз=N/4, где fi - тактовая частота. Демодулятор восстанавливает из цифровой последовательности исходный аналоговый сигнал.

dijital yankı
Pirinç. 3 (büyütmek için tıklayın)

Выходной сумматор служит для сложения задержанного сигнала с входным, причем уровень задержанного сигнала можно регулировать, что позволяет плавно изменять глубину реверберации от нулевой до максимальной.

Основные технические характеристики.

  • Номинальная полоса частот, Гц, при неравномерности АЧХ не более 3 дБ . . . 20...14 000
  • Номинальное входное напряжение, мВ ...... 100
  • Номинальное выходное напряжение. нВ ..... 200
  • Входное сопротивление, кОм 50
  • Выходное сопротивление, кОм 2
  • Коэффициент гармоник, %, на частоте 1000 Гц ... 0,5
  • Динамический диапазон, дБ, не хуже ....... 60
  • Пределы изменения тактовой частоты, кГц ..... 100...500
  • Пределы изменения времени задержки, с ...... 0.033...0.66

Принципиальная схема ревербератора показана на рис. 4. Входной сумматор выполнен на ОУ DA1, который одновременно выполняет функции фильтра НЧ первого порядка, ограничивающего спектр суммарного сигнала.

dijital yankı
Рис. 4. Принципиальная схема ревербератора (нажмите для увеличения)

В модулятор входят микросхемы DA2, DA3, DD1, логический элемент DD4.1 и полевой транзистор VT1.1. Работает модулятор следующим образом. Компаратор DA2 сравнивает напряжение сигнала, поступающего с выхода сумматора, с напряжением на интеграторе DA3 и в зависимости от того, какое из них больше, формирует сигнал 0 или 1 соответственно. Этот сигнал поступает на информационный вход триггера DD1.1, выполняющего функции цифрового устройства выборки - хранения. Импульсная последовательность с выхода триггера передается на вход регистра сдвига и на устройство преобразования однополярных импульсов в симметричные двуполярные, выполненное на резисторах R5-R7. Симметрии импульсов добиваются подстроечным резистором R5.

Далее импульсы поступают на интегратор, постоянную интегрирования которого изменяют посредством полевого транзистора VT1.1, управляемого сигналом с элемента DD4.1. Полевой транзистор VT1.1, элемент DD4.1 и триггеры микросхемы DD1 составляют узел адаптации. Этот узел изменяет постоянную интегрирования, а значит, и ^крутизну выходного сигнала интегратора в зависимости от амплитуды и частоты входного сигнала, что позволяет получать линейную АЧХ в широкой полосе частот при хорошем отношении сигнал/шум.

Если в цифровой последовательности в соседних тактах логические уровни различны, что соответствует малому изменению входного сигнала, то на выходе элемента "ИСКЛЮЧАЮЩЕЕ ИЛИ" DD4.1 формируется уровень 1. Это приводит к увеличению напряжения на затворе полевого транзистора VT1.1 и увеличению сопротивления его канала. В результате увеличится постоянная времени интегратора и соответственно уменьшится наклон его выходного напряжения.

При сильном изменении входного сигнала крутизна напряжения на выходе интегратора соответственно увеличится.

Регистр сдвига выполнен на микросхемах DD10-DD13. представляющих собой динамические ОЗУ емкостью 16 К с организацией в одни разряд. Микросхемы DD2, DD3 выполняют функции адресного счетчика, а микросхемы DD5, DD8 .- переключателя адреса строк и адреса столбцов ОЗУ. От устройства регенерации оказалось возможным отказаться, так как при тактовой частоте 100 кГц время обращения всех строк ОЗУ менее 2 мс.

Демодулятор, собранный на ОУ DA5, двух триггерах DD9.1 и DD9.2 и полевом транзисторе VT1.2, должен быть идентичен модулятору (если из него условно изъять компаратор). На ОУ DA4 выполнен выходной сумматор, который так же, как и входной сумматор, одновременно выполняет функции фильтра НЧ первого порядка. Переменный резистор R31 позволяет изменять длительность (глубину) реверберации, a R32 - уровень задержанного сигнала. Тактовый генератор собран на элементах DD6.4-DD6.6 по схеме интегратора-компаратора, частоту которого можно плавно изменять переменным резистором R16, что приводит к плавному изменению времени задержки (времени реверберации).

На элементах DD6.1-DD6.3 и транзисторе VT2 собран генератор синусоидальных колебаний инфразвуковой частоты, позволяющий модулировать частоту тактового генератора при реализации эффекта "хорус". Переключатель SA1 служит для ступенчатого изменения частоты генератора. Глубину модуляции устанавливают переменным резистором R19.

Налаживание ревербератора начинают с проверки работы тактового генератора. Подключают к выходу элемента DD6.4 вход осциллографа и наблюдают на экране прямоугольные импульсы, длительность которых должна быть равна примерно 1 мкс, а частота повторения - изменяться переменным резистором R16 (при установке движка переменного резистора R19 в нижнее по схеме положение) от 100 до 500 кГц. В генераторе синусоидальных колебаний подборкой резисторов R24 и R29 добиваются синусоидальной формы сигнала (вход осциллографа при этом подключают к минусовой обкладке конденсатора С8).

После проверки работоспособности тактового генератора и генератора синусоидальных колебаний приступают к налаживанию модулятора. Его вход соединяют с общим проводом, а к выходу ОУ DA3 подключают осциллограф. На экране наблюдают импульсы треугольной формы, симметричность которых устанавливают подстроечным резистором R5. Амплитуда импульсов. должна быть не более 5 мВ, а частота в два раза меньше тактовой. После проведенных операций отключают вход модулятора от общего провода и подключают к выходу входного сумматора, на вход которого подают со звукового генератора сигнал амплитудой 140 мВ и частотой 20 Гц. На выходе ОУ DA3 должен быть сигнал той же частоты, но с амплитудой в 10 раз большей, и сдвинутый на 180° относительно входного. Изменяя частоту входного сигнала от 20 Гц до 14 кГц, добиваются линейности АЧХ модулятора подборкой резистора R8.

Демодулятор налаживают в том же порядке, что и модулятор. Сначала отключают D-вход триггера DD9.1 от переключателя SA3 и соединяют с прямым выходом триггера DDI.I. Соединяют с общим проводом вход ревербератора, подключают к выходу ОУ DA5 осциллограф и подстроечным резистором R38 симметрируют сигнал треугольной формы. Затем подают со звукового генератора сигнал амплитудой 140 мВ и частотой от 20 Гц до 14 кГц и подборкой резистора R41 добиваются идентичности параметров модулятора и демодулятора. После этого D-вход триггера DD9.1 снова подключают к переключателю SA3.

Сигнал на выходе демодулятора должен быть задержан относительно входного, что проверяют (при минимальной тактовой частоте) быстрым снятием сигнала со входа ревербератора. На выходе сигнал должен пропадать через некоторое время, равное времени задержки.

Выходной сумматор особенностей не имеет и, как правило, начинает работать сразу.

Подборкой резистора R14 устанавливают максимальное время реверберации (число повторов эха) при верхнем по схеме положении движка переменного резистора R3). Подбирая резистор R34, устанавливают максимальный уровень задержанного сигнала в выходном.

Для питания ревербератора необходим маломощный стабилизированный источник с выходными напряжениями 12 В и 2Х5 В. Потребляемый от каждого источника ток не превышает 30 мА. Для исключения помех необходимо линии литания зашунтировать оксидными конденсаторами емкостью не менее 10 мкФ с параллельно включенными керамическими емкостью 0,1 мкФ. Вблизи каждого плюсового вывода микросхем DD10-DD13 необходимо также включить шунтирующие керамические конденсаторы емкостью 0,22 мкФ.

Подстроечные резисторы, использованные в устройстве,- СП5-3, переменные - СП-1. Конденсаторы: керамические - КМ-5 и КМ-6, оксидные -- К50-6. Вместо ОУ К140УД7 могут быть применены К140УД6, К544УД1, К140УД8. Компаратор К554СА1 может быть заменен на К554СА2, К554САЗ, К521СА1-K52ICA3 с учетом особенностей их включения. Микросхемы серии К561 могут быть заменены соответствующими из серий К164 или К176.

При разработке ревербератора была поставлена цель создать как можно более простое устройство при относительно высоких значениях качественных и эксплуатационных характеристик. Дальнейшее повышение качества может быть достигнуто применением в модуляторе и демодуляторе более сложных узлов адаптации. Уменьшение объема памяти за счет ступенчатого уменьшения "длины" адресного счетчика (например, введением переключателя на 14 положений, общий вывод направления которого подключен к объединенным R-входам микросхем DD2, DD3, выводы положений - к разрядам счетчика) даст возможность последовательно переходить от эффекта эхо" к реверберации, "флэнжеру", "фэйзеру" и так далее до полного исключения задержки. Но все это приводит к усложнению схемы, которое опытный радиолюбитель вполне может при желании реализовать самостоятельно.

Edebiyat:

1. Венедиктов М. Д., Женевский Ю. П., Марков В. В., Эйдус Г. С. Дельта-модуляция. Теория и применение. - М.: Связь. 1976.
2. Стил Р. Принципы дельта-модуляции. - М.: Связь, 1979.
3. Прагер Э., Шимек Б., Дмитриев В. П. Цифровая техника в связи. Под ред. В. В. Маркова. - М.: Радио и связь, Прага, 1981.

Автор: В. Барчуков, г. Москва; Публикация: Н. Большаков, rf.atnn.ru

Diğer makalelere bakın bölüm Dijital teknoloji.

Oku ve yaz yararlı bu makaleye yapılan yorumlar.

<< Geri

En son bilim ve teknoloji haberleri, yeni elektronikler:

Dokunma emülasyonu için suni deri 15.04.2024

Mesafenin giderek yaygınlaştığı modern teknoloji dünyasında, bağlantıyı ve yakınlık duygusunu sürdürmek önemlidir. Saarland Üniversitesi'nden Alman bilim adamlarının suni derideki son gelişmeleri, sanal etkileşimlerde yeni bir dönemi temsil ediyor. Saarland Üniversitesi'nden Alman araştırmacılar, dokunma hissini uzak mesafelere iletebilen ultra ince filmler geliştirdiler. Bu son teknoloji, özellikle sevdiklerinden uzakta kalanlar için sanal iletişim için yeni fırsatlar sunuyor. Araştırmacılar tarafından geliştirilen sadece 50 mikrometre kalınlığındaki ultra ince filmler tekstillere entegre edilebiliyor ve ikinci bir deri gibi giyilebiliyor. Bu filmler anne veya babadan gelen dokunsal sinyalleri tanıyan sensörler ve bu hareketleri bebeğe ileten aktüatörler gibi görev yapar. Ebeveynlerin kumaşa dokunması, basınca tepki veren ve ultra ince filmi deforme eden sensörleri etkinleştirir. Bu ... >>

Petgugu Global kedi kumu 15.04.2024

Evcil hayvanların bakımı, özellikle evinizi temiz tutmak söz konusu olduğunda çoğu zaman zorlayıcı olabilir. Petgugu Global girişiminin, kedi sahiplerinin hayatını kolaylaştıracak ve evlerini mükemmel şekilde temiz ve düzenli tutmalarına yardımcı olacak yeni ve ilginç bir çözümü sunuldu. Startup Petgugu Global, dışkıyı otomatik olarak temizleyerek evinizi temiz ve ferah tutan benzersiz bir kedi tuvaletini tanıttı. Bu yenilikçi cihaz, evcil hayvanınızın tuvalet aktivitesini izleyen ve kullanımdan sonra otomatik olarak temizlemeyi etkinleştiren çeşitli akıllı sensörlerle donatılmıştır. Cihaz, kanalizasyon sistemine bağlanarak, sahibinin müdahalesine gerek kalmadan verimli atık uzaklaştırılmasını sağlar. Ek olarak, tuvaletin büyük bir sifonlu depolama kapasitesi vardır, bu da onu çok kedili evler için ideal kılar. Petgugu kedi kumu kabı, suda çözünebilen kumlarla kullanılmak üzere tasarlanmıştır ve çeşitli ek özellikler sunar. ... >>

Bakımlı erkeklerin çekiciliği 14.04.2024

Kadınların "kötü çocukları" tercih ettiği klişesi uzun zamandır yaygın. Ancak Monash Üniversitesi'nden İngiliz bilim adamlarının son zamanlarda yaptığı araştırmalar bu konuya yeni bir bakış açısı sunuyor. Kadınların, erkeklerin duygusal sorumluluklarına ve başkalarına yardım etme isteklerine nasıl tepki verdiklerini incelediler. Araştırmanın bulguları, erkekleri kadınlar için neyin çekici kıldığına dair anlayışımızı değiştirebilir. Monash Üniversitesi'nden bilim adamlarının yürüttüğü bir araştırma, erkeklerin kadınlara karşı çekiciliği hakkında yeni bulgulara yol açıyor. Deneyde kadınlara, evsiz bir kişiyle karşılaştıklarında verdikleri tepkiler de dahil olmak üzere çeşitli durumlardaki davranışları hakkında kısa öykülerin yer aldığı erkeklerin fotoğrafları gösterildi. Erkeklerden bazıları evsiz adamı görmezden gelirken, diğerleri ona yiyecek almak gibi yardımlarda bulundu. Bir araştırma, empati ve nezaket gösteren erkeklerin, kadınlar için empati ve nezaket gösteren erkeklere göre daha çekici olduğunu ortaya çıkardı. ... >>

Arşivden rastgele haberler

Atomik saatler ve ultra hassas terazilerin bir karışımı 18.01.2013

Fizikçiler, sezyum atomuna dayalı, yalnızca bir kronometre ve zaman standardı olarak değil, aynı zamanda yakın gelecekte kütle ve zaman standartlarını birbirine bağlamaya izin verecek ultra hassas ölçekler olarak da kullanılabilen yeni bir tür atomik saat yarattılar. Science dergisinde yayınlanan bir makaleye göre.

"Saatlerimizin doğruluğu milyarda yedi parçayı aşıyor. Bu hata, sekiz yılda bir saniyelik bir kaymaya tekabül ediyor, bu da 60 yıl önce yaratılan ilk sezyum temelli atomik saatlerin doğruluğuna yaklaşık olarak eşit. ), bu saatler, en iyi Avogadro küreleri ile birlikte kilogramı yeniden tanımlamamıza yardımcı olacak. Saatimizdeki tik frekansı tek bir atomun kütlesine eşittir ve bunu bilerek, tüm numunenin kütlesini hesaplayabiliriz." Berkeley'deki California Üniversitesi'nden (ABD) takım lideri Holger Mueller dedi.

Fizikçilerin açıkladığı gibi, atomlar ve elektronlar sadece mikro parçacıklar değil, aynı zamanda dalgalardır. Bu nedenle frekans ve genlik dahil olmak üzere elektromanyetik dalgalarla aynı özelliklere sahiptirler. Atomların doğal titreşim frekansına, kuantum mekaniğinin öncülerinden Amerikalı fizikçi Arthur Compton'un onuruna Compton denir.

Makalenin yazarlarına göre, bu tür salınımları ölçme ve gözlemlemedeki zorluklar, bunların bir "metronom" veya saat olarak pratik kullanımlarını imkansız hale getirdi. Muller'ın grubu, iyi bilinen "ikiz paradoksu" kullanarak bu zorlukların üstesinden gelmeyi başardı. Bu paradoksa göre, yeterince yüksek hızda hareket eden nesneler için zaman daha yavaş akacaktır. Bu sayede uzak bir yıldıza seyahat edip geri dönen bir insan, dünyadaki ikiz kardeşinden daha genç olacaktır.

Makalenin yazarları, bu fenomeni sezyum atomlarının titreşim frekansını ölçmek için uyarladılar. Deneysel saatlerinde iki "ikiz" atom vardır. Biri dinleniyor ve ikincisi tankın içinden yüksek hızda hareket ediyor. Bu nedenle, her iki atomun birim zamanda yapacağı titreşim sayısı önemli ölçüde farklılık gösterecektir. Davranışları özel bir cihaz tarafından izlenir - okumaları özel bir bilgisayar algoritması kullanılarak işlenen bir atomik interferometre. Bu program, interferometre sensörlerinde lazer ışını ve sezyum atomları arasındaki çarpışmalardan sonra ortaya çıkan görüntüleri karşılaştırır ve bunlardan birinin Compton frekansını hesaplar.

Bu frekans sabit olduğundan ve yalnızca parçacığın kütlesine bağlı olduğundan, ultra hassas saatler için temel olarak kullanılabilir. Muller ve meslektaşları tarafından atomik saatlerin ilk prototipi doğrulukta bir şampiyon değil - diğer teknolojilere dayanan en iyi analoglardan yaklaşık 100 milyon kat daha düşük. Öte yandan, bu tür saatler tamamen farklı amaçlar için kullanılabilir, en çekici ve umut verici olanı yeni bir kitle standardı yaratılmasıdır. Muller'in açıkladığı gibi, Compton frekansının tam değerini ölçerek, bir parçacığın kütlesini ölçebilirsiniz, bu da kilogramın değerini doğru bir şekilde belirlemenize ve onu saniyeyle ilişkilendirmenize olanak tanır.

Diğer ilginç haberler:

▪ Defter Eurocom Panter 5

▪ Soğuk bir kuantum gaz ortamında manyetik monopoller

▪ KOBİ için Xerox DocuMate 4700 Düz Yataklı Tarayıcı

▪ Ses boşlukta bile yayılabilir

▪ Drone'lar jestlerle kontrol ediliyor

Bilim ve teknolojinin haber akışı, yeni elektronik

 

Ücretsiz Teknik Kitaplığın ilginç malzemeleri:

▪ sitenin ünlü kişilerin aforizmaları bölümü. Makale seçimi

▪ makale Ağlama Vadisi. Popüler ifade

▪ makale Amerikan birliklerinin nükleer saldırı için Nagasaki'yi seçmesindeki belirleyici faktör neydi? ayrıntılı cevap

▪ makale Çözücülerle çalışma. İş güvenliğine ilişkin standart talimat

▪ makale Bir hidroelektrik santralinin çalışma prensibi. Radyo elektroniği ve elektrik mühendisliği ansiklopedisi

▪ makale Olağandışı zarf. Odak Sırrı

Bu makaleye yorumunuzu bırakın:

Adı:


E-posta isteğe bağlı):


Yorum:




Makaleyle ilgili yorumlar:

Alex
Лет 25 назад собирал! До сих пор работает! Только отношение сигнал/шум не очень. [çok komik]


Bu sayfanın tüm dilleri

Ana sayfa | Kütüphane | Makaleler | Site haritası | Site incelemeleri

www.diagram.com.ua

www.diagram.com.ua
2000-2024