Menü English Ukrainian Rusça Ana Sayfa

Hobiler ve profesyoneller için ücretsiz teknik kütüphane Ücretsiz teknik kütüphane


RADYO ELEKTRONİK VE ELEKTRİK MÜHENDİSLİĞİ ANSİKLOPEDİSİ
Ücretsiz kütüphane / Radyo elektroniği ve elektrik mühendisliği ansiklopedisi / Elektrikçi

Bölüm 4. Hücreler ve trafo merkezleri

Распределительные устройства и подстанции напряжением выше 1 кB. Пневматическое хозяйство

Ücretsiz teknik kütüphane

Radyo elektroniği ve elektrik mühendisliği ansiklopedisi / Elektrik tesisatlarının kurulumu için kurallar (PUE)

makale yorumları makale yorumları

4.2.172. Для снабжения сжатым воздухом коммутационных аппаратов (воздушных выключателей, пневматических приводов к выключателям, разъединителям) РУ электрических станций и ПС должна предусматриваться установка сжатого воздуха, состоящая из стационарной компрессорной установки и воздухораспределительной сети.

Вывод в ремонт или выход из строя любого элемента установки сжатого воздуха не должны приводить к нарушению воздухообеспечения коммутационных аппаратов.

4.2.173. Получение в компрессорной установке осушенного воздуха осуществляется применением термодинамического способа осушки воздуха, для чего предусматриваются две ступени давления:

  • компрессорное (повышенное) - для компрессоров и воздухосборников-аккумуляторов сжатого воздуха, выбираемое из условия обеспечения требуемой относительной влажности воздуха в коммутационных аппаратах;
  • рабочее (номинальное) - для воздухораспределительной сети, в соответствии с номинальным давлением воздуха коммутационных аппаратов.

Системы компрессорного и рабочего давления должны быть связаны между собой перепускными клапанами.

Для снабжения сжатым воздухом с требуемой температурой точки росы выключателей допускается дополнительно применять физико-химический (адсорбционный) способ осушки воздуха. При этом число блоков очистки воздуха должно быть не менее двух.

4.2.174. Производительность рабочих компрессоров должна быть выбрана такой, чтобы обеспечить:

1) в установках с компрессорами давлением до 10 МПа:

  • 0,5 ч непрерывной работы с 2-часовой паузой;
  • восстановление давления в воздухосборниках, сниженного на вентилирование воздушных выключателей и на утечки всей системы, за 2 ч, пока компрессоры не работают, - в течение 0,5 ч;

2) в установках с компрессорами давлением 23 МПа:

  • 1,5 ч непрерывной работы с 2-часовой паузой;
  • восстановление давления в воздухосборниках (условия аналогичны изложенным в п.1) - в течение 1,5 ч.

При любом количестве рабочих компрессоров, исходя из условий надежности воздухообеспечения коммутационных аппаратов, должны быть предусмотрены один или два резервных в зависимости от местных условий.

Указанное не распространяется на ПС с одним коммутационным аппаратом, имеющим пневмопривод, где должны устанавливаться два компрессора, один из которых резервный.

Для снабжения сжатым воздухом коммутационных аппаратов ПС и РУ промышленных предприятий допускается использование заводской пневматической установки при условии обеспечения ею требований настоящей главы.

4.2.175. Пополнение воздуха в резервуарах коммутационных аппаратов в рабочем и аварийном режимах должно осуществляться за счет запаса воздуха в воздухосборниках компрессорного давления.

Емкость воздухосборников должна обеспечивать покрытие суммарного расхода воздуха (при неработающих компрессорах):

  • в рабочем режиме - на вентилирование воздушных выключателей и на утечки всей системы за 2 ч, пока компрессоры не работают. При этом остаточное давление в воздухосборниках должно быть таким, чтобы обеспечивалось допустимое влагосодержание воздуха в коммутационных аппаратах;
  • в аварийном режиме - на восстановление давления в резервуарах воздушных выключателей (до наименьшего допустимого значения по условиям работы выключателей) при одновременном отключении наибольшего числа выключателей, возможного по режиму работы электроустановок с учетом действия релейной защиты и автоматики. При этом наименьшее давление сжатого воздуха в воздухосборниках должно быть выше номинального давления сжатого воздуха в аппаратах:
  • на 30% - в установках с компрессорами давлением до 10 МПа;
  • на 80% - в установках с компрессорами давлением 23 МПа.

4.2.176. В расчетах следует принимать, что начало аварийного режима с массовым отключением выключателей совпадает с моментом периодического включения в работу компрессорной установки (т.е. когда давление в воздухосборниках снизилось до пускового давления компрессора).

4.2.177. Для каждого значения номинального давления коммутационных аппаратов РУ должна выполняться своя воздухораспределительная сеть, питающаяся не менее чем двумя перепускными клапанами от компрессорной установки.

4.2.178. Перепускные клапаны должны поддерживать в воздухораспределительной сети и в резервуарах воздушных выключателей давление в заданных пределах.

Пропускная способность перепускных клапанов и воздухопроводов распределительной сети должна обеспечивать восстановление давления воздуха (до наименьшего допустимого значения по условиям работы выключателей) в резервуаре выключателя, который может отключаться в цикле неуспешного АПВ (в том числе при наличии двукратного АПВ).

Перепускной клапан в нормальном режиме, как правило, должен обеспечивать непрерывный перепуск небольшого количества воздуха для покрытия расхода на утечки и вентилирование в системе после клапана.

4.2.179. Перепускные клапаны должны выполняться с электромагнитным управлением.

Управление автоматикой включения и отключения перепускных клапанов необходимо осуществлять независимо от режима работы компрессоров. Управление электромагнитными приводами перепускных клапанов следует производить электроконтактными манометрами, устанавливаемыми в помещении компрессорной установки.

4.2.180. Компрессорная установка, за исключением блока очистки воздуха, должна быть автоматизирована и работать без постоянного дежурного персонала.

В схеме управления компрессорной установкой должны быть предусмотрены: автоматический запуск и останов рабочих и резервных компрессоров, поддерживающих в воздухосборниках и в резервуарах выключателей давление в установленных пределах; автоматическая продувка (удаление влаги и масла) водомаслоотделителей; автоматическое управление перепускными клапанами; защита компрессорных агрегатов при нарушениях нормального режима работы.

Установка сжатого воздуха должна быть оборудована сигнализацией, действующей при нарушениях нормальной ее работы.

4.2.181. Устройство автоматизированных компрессорных установок с машинами производительностью до 5 м3/мин в РУ регламентируется действующими правилами устройства и безопасной эксплуатации стационарных компрессорных установок, воздухопроводов и газопроводов Госгортехнадзора России.

4.2.182. Воздухосборники должны удовлетворять Правилам устройства и безопасной эксплуатации сосудов, работающих под давлением, Госгортехнадзора России.

4.2.183. Воздухосборники должны устанавливаться на открытом воздухе на расстоянии не менее 1 м от стены компрессорной, желательно с теневой стороны. Специальный навес над ними (для защиты от солнечной радиации) не требуется. Должна предусматриваться возможность монтажа и демонтажа любого воздухосборника без нарушения нормальной эксплуатации остальных. Допускается установка воздухосборников в отдельном помещении того здания, в котором размещается ЗРУ с воздушными выключателями.

4.2.184. Спускные клапаны водомаслоотделителей компрессора и продувочные клапаны баллонов 23 МПа присоединяются к системе дренажа, выводимой наружу в специально предусмотренный для этого колодец.

4.2.185. Для нормальной работы компрессоров в помещении компрессорной установки должна поддерживаться температура не ниже +10 ºС и не выше +40 ºС, для чего должны быть предусмотрены отопление и приточно-вытяжная механическая вентиляция.

4.2.186. Воздухораспределительная сеть должна, как правило, выполняться кольцевой, разделенной на участки при помощи запорных вентилей.

Питание воздухопроводной сети должно осуществляться двумя магистралями от компрессорной установки.

4.2.187. Для защиты воздухораспределительной сети давлением 2,0 МПа компрессорной установки до 10 МПа в ней должны быть установлены предохранительные клапаны, срабатывающие при превышении давления в обеих нитках питающей магистрали воздухораспределительной сети.

4.2.188. Линейные водоотделители устанавливаются в обеих нитках питающей магистрали воздухораспределительной сети давлением 2,0 МПа компрессорной установки до 10 МПа. Линейный водоотделитель должен иметь спускной вентиль и штуцеры с фланцами для присоединения подводящего и отводящего воздухопроводов.

4.2.189. Прокладка воздухопроводов распределительной сети может выполняться открыто по конструкциям и стойкам под оборудование, в кабельных туннелях, каналах и лотках совместно с кабелями, а в закрытых помещениях - также по стенам и потолкам.

4.2.190. Воздухопроводы следует прокладывать с уклоном не менее 0,3% с установкой в нижних точках спускных вентилей для продувки сети. Ответвления к аппаратам следует прокладывать с уклоном не менее 0,3% в направлении главной магистрали.

4.2.191. Для компенсации температурных деформаций в воздухопроводной распределительной сети должны быть предусмотрены компенсаторы, выполняемые из труб того же диаметра. Конструкция компенсаторов определяется проектной организацией.

4.2.192. Воздухопроводы компрессорной установки, распределительной сети и ответвления к шкафам управления должны выполняться из стальных бесшовных труб, причем на давление 23 МПа из нержавеющей стали; воздухопроводы от шкафов управления к резервуарам воздушных выключателей - из медных труб, допускается применение бесшовных труб из коррозионностойкой стали. Воздухопроводы между шкафами и пневматическими приводами разъединителей из стальных труб.

Воздухопроводы компрессорного давления, расположенные вне помещения компрессорной установки до воздухосборников и в пределах стены, через которую они проходят, должны быть покрыты теплоизоляцией.

4.2.193. Стальные воздухопроводы должны соединяться сваркой встык; соединения с арматурой - фланцевые.

Для труб с внутренним диаметром 6-8 мм допускаются фланцевые соединения или соединения при помощи ниппелей.

4.2.194. Внутренние поверхности воздухосборников и линейных водоотделителей должны иметь антикоррозийное покрытие.

4.2.195. Наружные поверхности воздухосборников и линейных водоотделителей, устанавливаемых на открытом воздухе, должны быть окрашены устойчивой краской светлого тона.

4.2.196. Все элементы установки сжатого воздуха должны быть доступны для разборки и чистки.

Diğer makalelere bakın bölüm Elektrik tesisatlarının kurulumu için kurallar (PUE).

Oku ve yaz yararlı bu makaleye yapılan yorumlar.

<< Geri

En son bilim ve teknoloji haberleri, yeni elektronikler:

Bahçelerdeki çiçekleri inceltmek için makine 02.05.2024

Modern tarımda, bitki bakım süreçlerinin verimliliğini artırmaya yönelik teknolojik ilerleme gelişmektedir. Hasat aşamasını optimize etmek için tasarlanan yenilikçi Florix çiçek seyreltme makinesi İtalya'da tanıtıldı. Bu alet, bahçenin ihtiyaçlarına göre kolayca uyarlanabilmesini sağlayan hareketli kollarla donatılmıştır. Operatör, ince tellerin hızını, traktör kabininden joystick yardımıyla kontrol ederek ayarlayabilmektedir. Bu yaklaşım, çiçek seyreltme işleminin verimliliğini önemli ölçüde artırarak, bahçenin özel koşullarına ve içinde yetişen meyvelerin çeşitliliğine ve türüne göre bireysel ayarlama olanağı sağlar. Florix makinesini çeşitli meyve türleri üzerinde iki yıl boyunca test ettikten sonra sonuçlar çok cesaret vericiydi. Birkaç yıldır Florix makinesini kullanan Filiberto Montanari gibi çiftçiler, çiçeklerin inceltilmesi için gereken zaman ve emekte önemli bir azalma olduğunu bildirdi. ... >>

Gelişmiş Kızılötesi Mikroskop 02.05.2024

Mikroskoplar bilimsel araştırmalarda önemli bir rol oynar ve bilim adamlarının gözle görülmeyen yapıları ve süreçleri derinlemesine incelemesine olanak tanır. Bununla birlikte, çeşitli mikroskopi yöntemlerinin kendi sınırlamaları vardır ve bunların arasında kızılötesi aralığı kullanırken çözünürlüğün sınırlandırılması da vardır. Ancak Tokyo Üniversitesi'ndeki Japon araştırmacıların son başarıları, mikro dünyayı incelemek için yeni ufuklar açıyor. Tokyo Üniversitesi'nden bilim adamları, kızılötesi mikroskopinin yeteneklerinde devrim yaratacak yeni bir mikroskobu tanıttı. Bu gelişmiş cihaz, canlı bakterilerin iç yapılarını nanometre ölçeğinde inanılmaz netlikte görmenizi sağlar. Tipik olarak orta kızılötesi mikroskoplar düşük çözünürlük nedeniyle sınırlıdır, ancak Japon araştırmacıların en son geliştirmeleri bu sınırlamaların üstesinden gelmektedir. Bilim insanlarına göre geliştirilen mikroskop, geleneksel mikroskopların çözünürlüğünden 120 kat daha yüksek olan 30 nanometreye kadar çözünürlükte görüntüler oluşturmaya olanak sağlıyor. ... >>

Böcekler için hava tuzağı 01.05.2024

Tarım ekonominin kilit sektörlerinden biridir ve haşere kontrolü bu sürecin ayrılmaz bir parçasıdır. Hindistan Tarımsal Araştırma Konseyi-Merkezi Patates Araştırma Enstitüsü'nden (ICAR-CPRI) Shimla'dan bir bilim insanı ekibi, bu soruna yenilikçi bir çözüm buldu: rüzgarla çalışan bir böcek hava tuzağı. Bu cihaz, gerçek zamanlı böcek popülasyonu verileri sağlayarak geleneksel haşere kontrol yöntemlerinin eksikliklerini giderir. Tuzak tamamen rüzgar enerjisiyle çalışıyor, bu da onu güç gerektirmeyen çevre dostu bir çözüm haline getiriyor. Eşsiz tasarımı, hem zararlı hem de faydalı böceklerin izlenmesine olanak tanıyarak herhangi bir tarım alanındaki popülasyona ilişkin eksiksiz bir genel bakış sağlar. Kapil, "Hedef zararlıları doğru zamanda değerlendirerek hem zararlıları hem de hastalıkları kontrol altına almak için gerekli önlemleri alabiliyoruz" diyor ... >>

Arşivden rastgele haberler

kuantum spin sıvı 22.03.2018

1987'de, Nobel Fizik Ödülü sahibi Paul W. Anderson, yüksek sıcaklıkta süperiletkenlik olgusunun, kuantum spin sıvısı olarak bilinen egzotik bir kuantum madde durumuyla ilişkili olabileceğini öne sürdü. Bu durumda, madde parçacıklarının manyetik momentleri bir sıvı gibi davranır, ancak böyle bir sıvı mutlak sıfır sıcaklıkta bile "donmaz". Bu tür egzotik madde halleri, kuantum hesaplama sistemlerinde kullanımları için umut verici adaylar olarak kabul edilir, ancak yakın zamana kadar bilim adamları, çeşitli kuantum teknolojilerinde kullanımına uygun bir döndürme sıvısı elde edemediler.

Ve sadece son zamanlarda, Finlandiya'daki Aalto Üniversitesi'nden, Brezilya Fizik Araştırma Merkezi'nden (CBPF), Braunschweig Teknik Üniversitesi'nden ve Nagoya Üniversitesi'nden araştırmacılar, ilk kez, süper iletken bir kuantum spin sıvısı yaratmayı başardılar. Paul Anderson tarafından tahmin edilen teorik akışkanın özelliklerine mümkün olduğunca yakındır. Ve bazı manyetik malzemelerin özelliklerini kontrol etmek için Aalto Üniversitesi'nde geliştirilen teknoloji sayesinde bir kuantum spin-sıvısının yaratılması mümkün oldu.

Mevcut yüksek sıcaklık süper iletkenlerinin çoğu, bakır iyonlarının kare kristal bir kafes oluşturduğu ve komşu iyonların manyetik momentlerinin zıt yönlere yönlendirildiği bakır okside dayanmaktadır. Bakırın oksidasyon durumu değiştirilerek bu ince kristal yapı kırıldığında, malzeme bir süper iletken haline gelir. Bununla birlikte, sıradan bakır iyonlarının d10 ve d0 elektronik yapısına sahip iyonlarla yer değiştirmesi, tüm kristal yapıyı bir kuantum spin sıvısına dönüştürdü.

Aalto Üniversitesi'nden araştırmacı Otto Mustonen, "Gelecekte, d10/d0 iyon değişim yöntemi, diğer birçok manyetik malzeme türüne uygulanabilir ve benzersiz kuantum özelliklerine sahip bir dizi yeni malzeme oluşturmamıza olanak tanır" diyor.

Bir kuantum spin sıvısı yaratma gerçeğini kaydetmek ve özelliklerini belirlemek için bilim adamları, spin spektroskopisi teknolojisini kullandılar. Bu teknoloji, müonlar gibi elektron benzeri temel parçacıkların incelenen malzeme ile etkileşimine dayanmaktadır. Böyle bir yöntem, bir kuantum malzemede bulunan en zayıf manyetik alanları bile belirleyebilir.

Profesör Maarit Karppinen, "Sofistike ve yüksek kaliteli ekipmana ek olarak, bu tür araştırmalar fizikçilerin, kimyagerlerin ve diğer alanlardan bilim adamlarının işbirliğini gerektiriyor" diyor, "Ancak böyle çok disiplinli bir ekibin ortak çabalarıyla, kuantum spin sıvılarının özelliklerini incelemek ve sözde topolojik kuantum bilgisayarının pratik yaratımına yaklaşmak".

Diğer ilginç haberler:

▪ Hardsil teknolojisine sahip güvenilir SRAM bellek

▪ Dünyanın en ucuz renkli lazer yazıcısı

▪ Mikroçip LoRa RN2483 IoT Kablosuz Modülü

▪ Elektrik gaza dönüşüyor

▪ Hassas sıcaklık sensörleri TE Bağlantı G-NIMO-00x

Bilim ve teknolojinin haber akışı, yeni elektronik

 

Ücretsiz Teknik Kitaplığın ilginç malzemeleri:

▪ Sitenin radyo amatörlerine yönelik bölümü. Makale seçimi

▪ Yoksulların lehine Makale Konuşma. Popüler ifade

▪ makale Nükleer test verim rekoru ne kadar büyük? ayrıntılı cevap

▪ Makale Chaenomeles Japonca. Efsaneler, yetiştirme, uygulama yöntemleri

▪ makale Güç kaynağı. Çeşitli elektrikli cihazlar. dizin

▪ Negatif kabloda düzenleyici transistörlü voltaj stabilizatörleri makalesi. Radyo elektroniği ve elektrik mühendisliği ansiklopedisi

Bu makaleye yorumunuzu bırakın:

Adı:


E-posta isteğe bağlı):


Yorum:





Bu sayfanın tüm dilleri

Ana sayfa | Kütüphane | Makaleler | Site haritası | Site incelemeleri

www.diagram.com.ua

www.diagram.com.ua
2000-2024