Menü English Ukrainian Rusça Ana Sayfa

Hobiler ve profesyoneller için ücretsiz teknik kütüphane Ücretsiz teknik kütüphane


RADYO ELEKTRONİK VE ELEKTRİK MÜHENDİSLİĞİ ANSİKLOPEDİSİ
Ücretsiz kütüphane / Radyo-elektronik ve elektrikli cihazların şemaları

Evrensel mikrodenetleyici şarj cihazı. Radyo elektroniği ve elektrik mühendisliği ansiklopedisi

Ücretsiz teknik kütüphane

Radyo elektroniği ve elektrik mühendisliği ansiklopedisi / Güç kaynakları

makale yorumları makale yorumları

Автор поставил перед собой задачу создать простое универсальное устройство для зарядки любых малогабаритных аккумуляторов и их батарей различных типов, емкости и номинального напряжения.

Аккумуляторы сегодня очень распространены, но зарядные устройства для них, имеющиеся в продаже, как правило, не универсальны и слишком дороги. Предлагаемое устройство предназначено для зарядки аккумуляторных батарей и отдельных аккумуляторов (в дальнейшем используется термин "батарея") с номинальным напряжением 1,2...12,6 В и током от 50 до 950 мА. Входное напряжение устройства - 7...15 В. Ток потребления без нагрузки - 20 мА. Точность поддержания тока зарядки - ±10 мА. Устройство имеет ЖКИ и удобный интерфейс для установки режима зарядки и наблюдения за ее ходом.

Реализован комбинированный метод зарядки, состоящий из двух этапов. На первом этапе батарею заряжают неизменным током. По мере зарядки напряжение на ней растет. Как только оно достигнет заданного значения, наступит второй этап - зарядка неизменным напряжением. На этом этапе зарядный ток постепенно снижается, а на батарее поддерживается заданное напряжение. Если напряжение по какой-либо причине упадет ниже заданного, автоматически вновь начнется зарядка неизменным током.

Şarj devresi, Şek. bir.

Evrensel mikrodenetleyici şarj cihazı
Рис. 1. Схема зарядного устройства (нажмите для увеличения)

Его основа - микроконтроллер DD1. Он тактирован от внутреннего RC-генератора частотой 8 МГц. Использованы два канала АЦП микроконтроллера. Канал ADC0 измеряет напряжение на выходе зарядного устройства, а канал ADC1 - зарядный ток.

Оба канала работают в восьмиразрядном режиме, точности которого для описываемого устройства достаточно. Максимальное измеряемое напряжение - 19,9 В, максимальный ток - 995 мА. При превышении этих значений на экране ЖКИ HG1 появляется надпись "Hi".

АЦП работает с образцовым напряжением 2,56 В от внутреннего источника микроконтроллера. Чтобы иметь возможность измерять большее напряжение, резистивный делитель напряжения R9R10 уменьшает его перед подачей на вход ADC0 микроконтроллера.

Датчиком зарядного тока служит резистор R11. Падающее на нем при протекании этого тока напряжение поступает на вход ОУ DA2.1, который усиливает его приблизительно в 30 раз. Коэффициент усиления зависит от соотношения сопротивлений резисторов R8 и R6. С выхода ОУ напряжение, пропорциональное зарядному току, через повторитель на ОУ DA2.2 поступает на вход ADC1 микроконтроллера.

На транзисторах VT1-VT4 собран электронный ключ, работающий под управлением микроконтроллера, формирующего на выходе ОС2 импульсы, следующие с частотой 32 кГц. Коэффициент заполнения этих импульсов зависит от требуемых выходного напряжения и зарядного тока. Диод VD1, дроссель L1 и конденсаторы С7, С8 преобразуют импульсное напряжение в постоянное, пропорциональное его коэффициенту заполнения.

Светодиоды HL1 и HL2 - индикаторы состояния зарядного устройства. Включенный светодиод HL1 означает, что наступило ограничение выходного напряжения. Светодиод HL2 включен, когда идет нарастание зарядного тока, и выключен, когда ток не изменяется или падает. В ходе зарядки исправной разряженной батареи сначала будет включен светодиод HL2. Затем светодиоды станут поочередно мигать. О завершении зарядки можно судить по свечению только светодиода HL1.

Подборкой резистора R7 устанавливают оптимальную контрастность изображения на табло ЖКИ.

Датчик тока R11 можно сделать из отрезка высокоомного провода от спирали нагревателя или от мощного проволочного резистора. Автор использовал отрезок провода диаметром 0,5 мм длиной около 20 мм от реостата.

Микроконтроллер ATmega8L-8PU можно заменить любым из серии ATmega8 с тактовой частотой 8 МГц и выше. Полевой транзистор BUZ172 следует установить на теплоотвод с площадью охлаждающей поверхности не менее 4 см2. Этот транзистор можно заменить другим p-канальным с допустимым током стока более 1 А и малым сопротивлением открытого канала.

Вместо транзисторов КТ3102Б и КТ3107Д подойдет и другая комплементарная пара транзисторов с коэффициентом передачи тока не менее 200. При правильной работе транзисторов VT1-VT3 сигнал на затворе транзистора должен быть аналогичен показанному на рис. 2.

Evrensel mikrodenetleyici şarj cihazı
Рис. 2. График сигнала на затворе

Дроссель L1 извлечен из компьютерного блока питания (он намотан проводом диаметром 0,6 мм).

Конфигурация микроконтроллера должна быть запрограммирована в соответствии с рис. 3. Коды из файла V_A_256_16.hex следует занести в память программ микроконтроллера. В EEPROM микроконтроллера должны быть записаны следующие коды: по адресу 00H - 2СН, по адресу 01H - 03H, по адресу 02H - 0BEH, по адресу 03H -64H.

Evrensel mikrodenetleyici şarj cihazı
Pirinç. 3. Mikrodenetleyicinin programlanması

Налаживание зарядного устройства можно начинать без ЖКИ и микроконтроллера. Отключите транзистор VT4, а точки подключения его стока и истока соедините перемычкой. Подайте на устройство напряжение питания 16 В. Подберите резистор R10 таким, чтобы напряжение на нем находилось в пределах 1,9...2 В. Можно составить этот резистор из двух, соединенных последовательно. Если источника напряжения 16 В не нашлось, подайте 12 В или 8 В. В этих случаях напряжение на резисторе R10 должно быть соответственно около 1,5 В или 1 В.

Вместо батареи подключите к устройству последовательно амперметр и мощный резистор или автомобильную лампу. Изменяя напряжение питания (но не ниже 7 В) или подбирая нагрузку, установите ток через нее равным 1 А. Подберите резистор R6 таким, чтобы на выходе ОУ DA2.2 было напряжение 1,9...2 В. Как и резистор R10, резистор R6 удобно составить из двух.

Отключите питание, подключите ЖКИ и установите микроконтроллер. К выходу устройства присоедините резистор или лампу накаливания 12 В на ток около 0,5 А. При включении устройства на ЖКИ будут выведены напряжение на его выходе U и ток зарядки I, а также напряжение ограничения Uz и максимальный ток зарядки Iz. Сравните значения тока и напряжения на ЖКИ с показаниями образцовых амперметра и вольтметра. Вероятно, они будут различаться.

Выключите питание, установите перемычку S1 и вновь включите питание. Для калибровки амперметра нажмите и удерживайте кнопку SB4, а кнопками SB1 и SB2 установите на ЖКИ значение, ближайшее к показываемому образцовым амперметром. Для калибровки вольтметра нажмите и удерживайте кнопку SB3, а кнопками SB1 и SB2 установите на ЖКИ значение, равное показываемому образцовым вольтметром. Не выключая питания, снимите перемычку S1. Калибровочные коэффициенты будут записаны в EEPROM микроконтроллера для напряжения по адресу 02H, а для тока - по адресу 03H.

Выключите питание зарядного устройства, установите на место транзистор VT4, а к выходу устройства подключите автомобильную лампу на 12 В. Включите устройство и установите Uz=12 В. При изменении Iz должна плавно меняться яркость свечения лампы. Устройство готово к работе.

Требуемый зарядный ток и максимальное напряжение на батарее устанавливают кнопками SB1 "▲", SB2 "▼", SB3 "U", SB4 "I". Интервал изменения зарядного тока - 50...950 мА с шагом 50 мА. Интервал изменения напряжения - 0,1...16 В с шагом 0,1 В.

Для изменения Uz или Iz нажмите и удерживайте соответственно кнопку SB3 или SB4, ас помощью кнопок SB1 и SB2 установите требуемое значение. Через 5 с после отпускания всех кнопок установленное значение будет записано в EEPROM микроконтроллера (Uz - по адресу 00H, Iz - по адресу 01H). Следует иметь в виду, что удержание кнопки SB1 или SB2, нажатой более 4 с, увеличивает скорость изменения параметра приблизительно в десять раз.

Программу микроконтроллера можно скачать с ftp://ftp.radio.ru/pub/2016/09/v-a-256_16.zip.

Автор: В. Нефедов

Diğer makalelere bakın bölüm Güç kaynakları.

Oku ve yaz yararlı bu makaleye yapılan yorumlar.

<< Geri

En son bilim ve teknoloji haberleri, yeni elektronikler:

Dokunma emülasyonu için suni deri 15.04.2024

Mesafenin giderek yaygınlaştığı modern teknoloji dünyasında, bağlantıyı ve yakınlık duygusunu sürdürmek önemlidir. Saarland Üniversitesi'nden Alman bilim adamlarının suni derideki son gelişmeleri, sanal etkileşimlerde yeni bir dönemi temsil ediyor. Saarland Üniversitesi'nden Alman araştırmacılar, dokunma hissini uzak mesafelere iletebilen ultra ince filmler geliştirdiler. Bu son teknoloji, özellikle sevdiklerinden uzakta kalanlar için sanal iletişim için yeni fırsatlar sunuyor. Araştırmacılar tarafından geliştirilen sadece 50 mikrometre kalınlığındaki ultra ince filmler tekstillere entegre edilebiliyor ve ikinci bir deri gibi giyilebiliyor. Bu filmler anne veya babadan gelen dokunsal sinyalleri tanıyan sensörler ve bu hareketleri bebeğe ileten aktüatörler gibi görev yapar. Ebeveynlerin kumaşa dokunması, basınca tepki veren ve ultra ince filmi deforme eden sensörleri etkinleştirir. Bu ... >>

Petgugu Global kedi kumu 15.04.2024

Evcil hayvanların bakımı, özellikle evinizi temiz tutmak söz konusu olduğunda çoğu zaman zorlayıcı olabilir. Petgugu Global girişiminin, kedi sahiplerinin hayatını kolaylaştıracak ve evlerini mükemmel şekilde temiz ve düzenli tutmalarına yardımcı olacak yeni ve ilginç bir çözümü sunuldu. Startup Petgugu Global, dışkıyı otomatik olarak temizleyerek evinizi temiz ve ferah tutan benzersiz bir kedi tuvaletini tanıttı. Bu yenilikçi cihaz, evcil hayvanınızın tuvalet aktivitesini izleyen ve kullanımdan sonra otomatik olarak temizlemeyi etkinleştiren çeşitli akıllı sensörlerle donatılmıştır. Cihaz, kanalizasyon sistemine bağlanarak, sahibinin müdahalesine gerek kalmadan verimli atık uzaklaştırılmasını sağlar. Ek olarak, tuvaletin büyük bir sifonlu depolama kapasitesi vardır, bu da onu çok kedili evler için ideal kılar. Petgugu kedi kumu kabı, suda çözünebilen kumlarla kullanılmak üzere tasarlanmıştır ve çeşitli ek özellikler sunar. ... >>

Bakımlı erkeklerin çekiciliği 14.04.2024

Kadınların "kötü çocukları" tercih ettiği klişesi uzun zamandır yaygın. Ancak Monash Üniversitesi'nden İngiliz bilim adamlarının son zamanlarda yaptığı araştırmalar bu konuya yeni bir bakış açısı sunuyor. Kadınların, erkeklerin duygusal sorumluluklarına ve başkalarına yardım etme isteklerine nasıl tepki verdiklerini incelediler. Araştırmanın bulguları, erkekleri kadınlar için neyin çekici kıldığına dair anlayışımızı değiştirebilir. Monash Üniversitesi'nden bilim adamlarının yürüttüğü bir araştırma, erkeklerin kadınlara karşı çekiciliği hakkında yeni bulgulara yol açıyor. Deneyde kadınlara, evsiz bir kişiyle karşılaştıklarında verdikleri tepkiler de dahil olmak üzere çeşitli durumlardaki davranışları hakkında kısa öykülerin yer aldığı erkeklerin fotoğrafları gösterildi. Erkeklerden bazıları evsiz adamı görmezden gelirken, diğerleri ona yiyecek almak gibi yardımlarda bulundu. Bir araştırma, empati ve nezaket gösteren erkeklerin, kadınlar için empati ve nezaket gösteren erkeklere göre daha çekici olduğunu ortaya çıkardı. ... >>

Arşivden rastgele haberler

Seagate 8 TB sabit disk 21.12.2014

Seagate Technology, dünyanın ilk 8 TB sabit diskini toplu sevkiyata başladı. Sürücünün maliyeti 260 dolar. Böylece ExtremeTech, 1 GB kapasitenin fiyatının 0,03 dolar olduğunu söylüyor.

3,5 inçlik form faktöründe yapılan yeni sürücü, arşiv verilerinin depolanması için bir araç olarak konumlandırılmıştır. Rekor bir kapasiteye sahip, ancak performansı için aynı şey söylenemez.

İş mili hızı 5900 rpm'dir. Önbellek miktarı 128 MB'dir. Ortalama okuma ve yazma hızı 150 MB/sn, maksimum 190 MB/sn'dir. Ortalama çalışma süresi - 800 bin saat.

Model ST8000AS0002, her biri 6 TB kapasiteli 1,33 manyetik plakadan oluşur. Shingled Magnetic Recording (SMR) teknolojisi tarafından ek bir 330 GB sağlandı, bu olmadan plakanın kapasitesi 1 TB ile sınırlı olacaktı.

SMR teknolojisi, bilgilerin kayıt yoğunluğunun artması için parçaları üst üste bindirmenize olanak tanır. Bu teknoloji şimdiye kadar yalnızca Seagate tarafından yönetildi. Buna karşılık Western Digital, sabit disklerin boşluğunu helyumla dolduruyor. Gaz sürtünmeyi azaltır ve aşırı ısınmaya neden olmadan plakalar arasındaki mesafeyi azaltmayı mümkün kılar (bu yöntem 6 TB kapasiteye ulaşmamızı sağladı).

Her iki yöntem de zaten teknik sınırlara yakındır. Bu nedenle, bir sonraki aşamada üreticiler, iki boyutlu manyetik kayıt (İki Boyutlu Manyetik Kayıt - TDMR) teknolojisine geçmeyi planlıyor.

Seagate 8 TB sabit diski Ağustos 2014'te duyuruldu. Disk, 2014'ün sonunda satışa sunulacak.

Diğer ilginç haberler:

▪ Kasırgalara karşı kabarcıklar

▪ Yeni 18W ve 25W Ağ Adaptörleri

▪ Yeni programlanabilir akıllı anahtar ailesi

▪ ViewSonic VG2401mh'yi izleyin

▪ geniş bant lazer

Bilim ve teknolojinin haber akışı, yeni elektronik

 

Ücretsiz Teknik Kitaplığın ilginç malzemeleri:

▪ Sitenin olağanüstü fizikçilerin hayatı bölümü. Makale seçimi

▪ makale Hayvanlarda elektrik. Bilimsel keşfin tarihi ve özü

▪ makale Mevsimler neden var? ayrıntılı cevap

▪ Akış başına parça ve ürün seçici (başlatıcı). İş güvenliği ile ilgili standart talimat

▪ makale Kararlı akım üreteci. Radyo elektroniği ve elektrik mühendisliği ansiklopedisi

▪ makale Radyo alıcısı aynı zamanda bir dijital frekans ölçerdir. Radyo elektroniği ve elektrik mühendisliği ansiklopedisi

Bu makaleye yorumunuzu bırakın:

Adı:


E-posta isteğe bağlı):


Yorum:





Bu sayfanın tüm dilleri

Ana sayfa | Kütüphane | Makaleler | Site haritası | Site incelemeleri

www.diagram.com.ua

www.diagram.com.ua
2000-2024