Menü English Ukrainian Rusça Ana Sayfa

Hobiler ve profesyoneller için ücretsiz teknik kütüphane Ücretsiz teknik kütüphane


Transistörlerde reopletismograf. Radyo elektroniği ve elektrik mühendisliği ansiklopedisi

Ücretsiz teknik kütüphane

Radyo elektroniği ve elektrik mühendisliği ansiklopedisi / Günlük hayatta elektronik

makale yorumları makale yorumları

При оценке состояния сердечно-сосудистой системы человека современная медицина и биология широко использует методику так называемой, импедансной реоплетизмографии (регистрации изменений электрической проводимости тела человека). Реоплетизмография используется при исследовании как центрального, так и периферического кровообращения. Достоинство этого метода состоит в том, что само исследование практически не вносит изменений в состояние исследуемого объекта.

Электрическое сопротивление между какими-либо участками тела человека представляет собой комплексное объемное сопротивление, упрощенная эквивалентная схема которого для переменного тока приведена на рис. 1.

Емкость Сэ-т возникает между поверхностями электродов и тканями, прилегающими к внутренней стороне кожи. Кожа, особенно эпителий, имеет весьма высокое удельное сопротивление и представляет собой диэлектрик конденсаторов Сэ-т. Ткани, лежащие под кожей, условно принимаются .однородными по структуре. Они представлены в виде элементов Ст и Rт. Емкости конденсаторов Сэ-т зависят от диэлектрических свойств кожи, ее состояния (например, от увлажненности) и площади наложенных электродов.

Transistörlerde reopletismograf
Ris.1

Величина емкости определяется величиной поляризационного аффекта, который уменьшается с ростом частоты. На частотах выше 80- 100 кГц явление поляризации практически не наблюдается, а емкостное сопротивление конденсаторов Ст невелико. Можно считать поэтому, что проводимость ткани в области этих частот имеет лишь активную составляющую.

Абсолютные значения сопротивления живой ткани нестабильны, а зависят от целого ряда причин, которые часто трудно учесть. Вследствие этого представляют интерес. не абсолютные значения сопротивления, а его относительные изменения от какого-либо начального уровня.

В настоящее время можно считать доказанным, что электропроводность живой ткани определяется главным образом степенью ее кровенаполнения. Это объясняется тем, что кровь (главным образом ее плазма) обладает очень высокой электропроводностью. Поэтому по электропроводности живой ткани на высоких частотах можно судить о кровенаполнении отдельных органов или участков тела. Методика исследования называется реоплетизмографией, а иногда просто реографией.

Описываемый ниже прибор, названный реоплетизмографом, предназначен для исследований быстрых незначительных изменений электропроводности живой ткани, отражающих пульсовые колебания кровенаполнения, а также медленных (от 0 гц) изменений кровенаполнения, например, при дыхании. Реоплетизмограф представляет собой портативную приставку на транзисторах к какому-либо кардиографу (при записи пульсовых колебаний кровенаполнения). С выхода этой приставки напряжение можно подавать и на самописец (например, Н373).

Рабочая частота 150 кГц. Выходное напряжение не менее 2 мв при изменении сопротивления 50 ом. на 0,1%. Диапазоны частот выходного напряжения, снимаемого с выхода 1-4 0,2-150 гц, а с выхода 2-3 0-150 Гц.

Devre şeması

Принцип действия реоплетизмографа иллюстрируется блок-схемой (рис. 2). Исследуемый участок живой ткани подключают к одному из плеч моста, питаемого переменным током частотой 150 кГц. Мост балансируют таким образом, чтобы напряжение ВЧ на его диагонали было минимально.

Transistörlerde reopletismograf
Ris.2

Изменения проводимости исследуемого объекта приводят к модуляции напряжения ВЧ на выходе моста по закону изменения электропроводимости исследуемого объекта. Модулированное ВЧ напряжение усиливается и детектируется. В результате детектирования выделяется модулирующее напряжение НЧ, которое подается на регистрирующее устройство.

Принципиальная схема реоплетизмографа приведена на рис. 3. Генератор ВЧ выполнен на транзисторе T1 по схеме с емкостной обратной связью. Колебательный контур включен в цепь коллектора транзистора, его резонансная частота определяется индуктивностью катушки L1 и общей емкостью конденсаторов С2 - С3. Глубина положительной обратной связи зависит от соотношения емкостей конденсаторов С2-С3 и сопротивления резистора R2. База транзистора заземлена по переменному току (через конденсатор С1).

Transistörlerde reopletismograf
Şekil.3 (büyütmek için tıklayın)

Генератор, собранный по этой схеме, обладает высокой стабильностью частоты, конструкция его контурных катушек проста, а налаживание не вызывает затруднений, так как не приходится подбирать порядок включения выводов катушек.

С катушки L1 высокочастотное напряжение подается на измерительный мост. В левое, нижнее по схеме, плечо моста последовательно с элементами С13R5-R7 с помощью экранированного кабеля подключается исследуемый объект (условно обозначенный на схеме "Пациент"), С помощью потенциометра R4 ("Баланс") можно сбалансировать мост по активной составляющей, а с помощью конденсаторов С4-С11 - по реактивной составляющей.

В реальных условиях всегда наблюдаются как быстрые (пульсовые) колебания электропроводности, так и медленные, вызванные, например, дыханием. Амплитуда медленных колебаний, как правило, значительно больше, чем амплитуда пульсовых колебаний. Если работать в условиях точного баланса моста, то медленные изменения колебания могут привести к нарушению баланса, что, в свою очередь, приведет к изменению фазы выходного напряжения. Поэтому при балансировке переключатель П2 устанавливают в такое положение, при котором резистор R8 закорачивается, а индикатор баланса (микроамперметр) подключается к выходу детектора.

Результаты исследований можно получить в численном выражении. С этой целью последовательно с "Пациентом" (а иногда и параллельно ему) включают потенциометр, изменяя сопротивление которого калибруют чувствительность всего тракта устройства. Чаще всего применяют следующий метод калибровки: при изменении сопротивления в цепи "Пациента" на 0,05 ома амплитуда записи должна составлять 1 см. Чтобы исключить влияние переходного сопротивления контактов применяется схема калибровки, показанная на рис.3. Последовательно с "Пациентом" включен резистор R5, параллельно которому переключателем Вк1i подключается резистор R6, сопротивление которого в 200 раз больше, чем R5. При этом их общее сопротивление на 0,05 ома меньше, чем R5. При калибровке перед записью медленных колебаний параллельно R5 подключается резистор R7. Тогда общее сопротивление цепи уменьшается на 1 ом.

Напряжение с моста поступает на эмиттерный повторитель, собранный на транзисторе Т2, а затем на двухкаскадный усилитель, выполненный по каскодной схеме. Нагрузкой усилителя является контур L3C17, настроенный на частоту 150 кГц.

Детектор выполнен на полупроводниковых диодах Д1 - Д2.В результате использования двухполупериодного детектора приставка имеет симметричный выход. Постоянные времени разрядных цепей детектора выбраны такими, чтобы после детектирования выделялись составляющие сигнала с частотами до 150 Гц. Со стороны низших частот постоянная времени определяется емкостями переходных конденсаторов С21 и С22 и входным сопротивлением последующих каскадов. При входных сопротивлениях 1 Мом, низшая частотная граница составляет около 0,2 Гц на уровне - 3 дБ.

К выходу детектора подключается микроамперметр, по минимальному отклонению стрелки которого балансируют мост перед началом измерения.

İnşaat ve detaylar

Реоплетизмограф выполнен в прямоугольном металлическом кожухе с наружными размерами 50Х120Х180 мм. Все детали его, за исключением источников питания, смонтированы на монтажных платах, прикрепленных к верхней крышке, являющейся одновременно лицевой панелью. На лицевой панели размещены: микроамперметр, выключатели Вк1 - Вк3, переключатели П1, П2 и разъем для подключения кабеля "Пациент". Разъем для подключения прибора к регистрирующим устройствам расположен на задней панели. Все детали реоплетизмографа смонтированы на двух монтажных платах. На одной, помещенной в экран из жести, смонтирован генератор, на другой - усилитель, детектор и измерительный мост.

В приборе использованы транзисторы, имеющие В в пределах 30-50. Контурные катушки выполнены на сердечниках типа СБ-2а, намотаны проводом ПЭВ 0,1 и содержат: катушка L1-200 витков, катушка L2 - 80 витков, катушка L3 - 200 витков и катушка L4 - 100 витков.

Дроссель Др1 намотан на ферритовом кольце Ф-600, наружный диаметр которого 12 мм, и содержит 200 витков провода ПЭВ 0,1.

Резистор R4 обязательно должен быть проволочным, а резистор R5 составлен из трех параллельно включенных с сопротивлениями 27,27 и 91 Ом. В качестве индикатора можно применить любой микроамперметр, чувствительность которого 50- 200 мкА.

Образцы записей, полученных с описываемым реоплетизмографом, приведены на рис. 4.

Transistörlerde reopletismograf
Ris.4

Авторы: В. Большов, В. Смирнов; Публикация: Н. Большаков, rf.atnn.ru

Diğer makalelere bakın bölüm Günlük hayatta elektronik.

Oku ve yaz yararlı bu makaleye yapılan yorumlar.

<< Geri

En son bilim ve teknoloji haberleri, yeni elektronikler:

Bahçelerdeki çiçekleri inceltmek için makine 02.05.2024

Modern tarımda, bitki bakım süreçlerinin verimliliğini artırmaya yönelik teknolojik ilerleme gelişmektedir. Hasat aşamasını optimize etmek için tasarlanan yenilikçi Florix çiçek seyreltme makinesi İtalya'da tanıtıldı. Bu alet, bahçenin ihtiyaçlarına göre kolayca uyarlanabilmesini sağlayan hareketli kollarla donatılmıştır. Operatör, ince tellerin hızını, traktör kabininden joystick yardımıyla kontrol ederek ayarlayabilmektedir. Bu yaklaşım, çiçek seyreltme işleminin verimliliğini önemli ölçüde artırarak, bahçenin özel koşullarına ve içinde yetişen meyvelerin çeşitliliğine ve türüne göre bireysel ayarlama olanağı sağlar. Florix makinesini çeşitli meyve türleri üzerinde iki yıl boyunca test ettikten sonra sonuçlar çok cesaret vericiydi. Birkaç yıldır Florix makinesini kullanan Filiberto Montanari gibi çiftçiler, çiçeklerin inceltilmesi için gereken zaman ve emekte önemli bir azalma olduğunu bildirdi. ... >>

Gelişmiş Kızılötesi Mikroskop 02.05.2024

Mikroskoplar bilimsel araştırmalarda önemli bir rol oynar ve bilim adamlarının gözle görülmeyen yapıları ve süreçleri derinlemesine incelemesine olanak tanır. Bununla birlikte, çeşitli mikroskopi yöntemlerinin kendi sınırlamaları vardır ve bunların arasında kızılötesi aralığı kullanırken çözünürlüğün sınırlandırılması da vardır. Ancak Tokyo Üniversitesi'ndeki Japon araştırmacıların son başarıları, mikro dünyayı incelemek için yeni ufuklar açıyor. Tokyo Üniversitesi'nden bilim adamları, kızılötesi mikroskopinin yeteneklerinde devrim yaratacak yeni bir mikroskobu tanıttı. Bu gelişmiş cihaz, canlı bakterilerin iç yapılarını nanometre ölçeğinde inanılmaz netlikte görmenizi sağlar. Tipik olarak orta kızılötesi mikroskoplar düşük çözünürlük nedeniyle sınırlıdır, ancak Japon araştırmacıların en son geliştirmeleri bu sınırlamaların üstesinden gelmektedir. Bilim insanlarına göre geliştirilen mikroskop, geleneksel mikroskopların çözünürlüğünden 120 kat daha yüksek olan 30 nanometreye kadar çözünürlükte görüntüler oluşturmaya olanak sağlıyor. ... >>

Böcekler için hava tuzağı 01.05.2024

Tarım ekonominin kilit sektörlerinden biridir ve haşere kontrolü bu sürecin ayrılmaz bir parçasıdır. Hindistan Tarımsal Araştırma Konseyi-Merkezi Patates Araştırma Enstitüsü'nden (ICAR-CPRI) Shimla'dan bir bilim insanı ekibi, bu soruna yenilikçi bir çözüm buldu: rüzgarla çalışan bir böcek hava tuzağı. Bu cihaz, gerçek zamanlı böcek popülasyonu verileri sağlayarak geleneksel haşere kontrol yöntemlerinin eksikliklerini giderir. Tuzak tamamen rüzgar enerjisiyle çalışıyor, bu da onu güç gerektirmeyen çevre dostu bir çözüm haline getiriyor. Eşsiz tasarımı, hem zararlı hem de faydalı böceklerin izlenmesine olanak tanıyarak herhangi bir tarım alanındaki popülasyona ilişkin eksiksiz bir genel bakış sağlar. Kapil, "Hedef zararlıları doğru zamanda değerlendirerek hem zararlıları hem de hastalıkları kontrol altına almak için gerekli önlemleri alabiliyoruz" diyor ... >>

Arşivden rastgele haberler

Sennheiser Evolution Kablosuz D1 Kablosuz Mikrofon Sistemi 15.10.2015

Sennheiser, yeni evrim kablosuz D1 mikrofon sistemini tanıttı. Yenilik, yüksek ses kalitesini, güvenilir iletimi ve kullanım kolaylığını birleştirir.

Sennheiser Evolution Wireless D1 dijital mikrofon sistemi, yüksek kalite ve güvenilir ses iletimine değer veren yeni başlayan müzisyenler için bir nimettir. Sennheiser ürün müdürü Martin Fischer, "D1, kablosuz sistemlerle çalışmanın karmaşıklığını üstlenerek sizi yaratıcı bir ortama sokuyor" diyor.

Evolution Wireless D1, müzisyenlerin performanslar sırasında radyo frekansı ayarlarıyla dikkatlerinin dağılmamasını sağlayan modern ve akıllı bir sistemdir. Vericiler ve alıcılar birbirleriyle eşleşebilir ve en temiz çalışma frekanslarını seçebilir. Ve birkaç D1 sisteminin eşzamanlı çalışmasıyla, radyo frekansları otomatik olarak kendi aralarında paralelleştirilir ve olası 15 kanaldan birini işgal eder.

Cihaz, dünya çapında hava üzerinden veri iletimi için serbestçe kullanılan 2,4 GHz bandında çalışır. Yaygın olarak kullanılan frekans aralığına rağmen Evolution Wireless D1, güvenilir ve kesintisiz veri iletimi sağlar. Ek olarak, her radyo sisteminde en az iki kanal bulunur, böylece gerekirse hızlı bir şekilde yedek bir frekansa geçebilirsiniz.


AptX Live codec bileşeni, vokaller, konuşma ve müzik aletleri için ses kalitesinden ve geniş dinamik aralıktan sorumludur. Ve burada sistemin zekası da kendini gösterir: EW D1 mikrofonlar veya enstrümanlar için en doğru hassasiyet değerini kendisi seçer ve vericilerin uyarlanabilir güç modu, gerekli aralığa bağlı olarak gücü otomatik olarak değiştirir.

Evolution Wireless D1 de ses işleme yeteneklerinden yoksun değildi. Araçta 7 bantlı bir grafik EQ, düşük kesim filtresi, otomatik kazanç kontrolü ve özden arındırma bulunur. D1 telsiz sistemini kurmak için Apple veya Android mobil işletim sistemlerine dayalı cihazlara özel bir uygulama kullanılmaktadır.

Diğer ilginç haberler:

▪ lazer mancınık

▪ İnsansız araçlar köprüyü kendileri yaptı

▪ Varistörler HMOV

▪ Astronotlar onaylıyor: tuz tehlikelidir

▪ HP Chromebook X2 Hibrit

Bilim ve teknolojinin haber akışı, yeni elektronik

 

Ücretsiz Teknik Kitaplığın ilginç malzemeleri:

▪ site bölümü Muhteşem hileler ve ipuçları. Makale seçimi

▪ makale Rüyalar, rüyalar, tatlılığın nerede? Popüler ifade

▪ makale Ay'ın veya Güneş'in etrafındaki daireler ne anlama geliyor? ayrıntılı cevap

▪ makale Eucommia vyazolistnaya. Efsaneler, yetiştirme, uygulama yöntemleri

▪ makale Floresan lamba nasıl yakılır. Radyo elektroniği ve elektrik mühendisliği ansiklopedisi

▪ makale Gökyüzü hakkında rüya. fiziksel deney

Bu makaleye yorumunuzu bırakın:

Adı:


E-posta isteğe bağlı):


Yorum:





Bu sayfanın tüm dilleri

Ana sayfa | Kütüphane | Makaleler | Site haritası | Site incelemeleri

www.diagram.com.ua

www.diagram.com.ua
2000-2024