Menü English Ukrainian Rusça Ana Sayfa

Hobiler ve profesyoneller için ücretsiz teknik kütüphane Ücretsiz teknik kütüphane


RADYO ELEKTRONİK VE ELEKTRİK MÜHENDİSLİĞİ ANSİKLOPEDİSİ
Ücretsiz kütüphane / Radyo-elektronik ve elektrikli cihazların şemaları

Kronometre. Radyo elektroniği ve elektrik mühendisliği ansiklopedisi

Ücretsiz teknik kütüphane

Radyo elektroniği ve elektrik mühendisliği ansiklopedisi / Ölçüm teknolojisi

makale yorumları makale yorumları

Предлагаемая вниманию читателей конструкция представляет собой высокоточный прибор для измерения времени, иначе говоря - хронометр, выполненный в габаритах наручных часов с автономным питанием. Он содержит сравнительно небольшое число общедоступных компонентов. Печатные платы изготовлены в домашних условиях.

Чтобы вписаться в габариты наручных часов, компоненты хронометра размещены на двух печатных платах. На нижней плате, схема которой изображена на рис. 1, находятся микросхема прецизионных часов реального времени DS3231M+ (DD1) и микроконтроллер ATtiny2313A-SU (DD2). Микроконтроллер тактирован от внутреннего RC-генератора, что освободило его выводы PA0 и Pa1 для связи с часовой микросхемой по интерфейсу I2C.

Kronometre
Рис. 1. Микросхема прецизионных часов

Порт B микроконтроллера управляет элементами цифр, изображаемых светодиодным индикатором, а к выводам порта D подключены аноды разрядов индикатора и кнопки управления. Хронометр питают от одного литиевого элемента CR2032 напряжением 3 В. На микросхему DD1 основное напряжение питания поступает с вывода PD0 микроконтроллера, а резервное (Vb) - через диод Шотки VD1 от литиевого элемента. Этим обеспечен переход микросхемы DD1 в режим с малым потреблением тока при работе микроконтроллера DD2 в "спящем" режиме.

Резистор R4 защищает выход PD0 от возможного замыкания на общий провод при нажатии на подключенную к нему же кнопку, находящуюся надругой плате.

Чертеж нижней печатной платы изображен на рис. 2. Она рассчитана на установку элементов для поверхностного монтажа - резисторов и конденсаторов типоразмера 1206, микросхем в корпусах SOIC. На плате предусмотрены контакты для связи микроконтроллера с программатором.

Kronometre
Рис. 2. Чертеж нижней печатной платы

Схема верхней платы показана на рис. 3. На ней расположены четырехразрядный светодиодный индикатор HG1, элемент питания G1 и кнопки SB1-SB3. Чертеж платы - на рис. 4. Резисторы на ней - типоразмера 0805. Элемент питания помещен в держатель CH224-2032.

Kronometre
Рис. 3. Схема верхней платы

Kronometre
Pirinç. 4. Tahta çizimi

Платы изготовлены из фольгированного с двух сторон стеклотекстолита толщиной 1 мм. После изготовления необходимо тщательно проверить печатные проводники на обрыв и замыкание. Межплатные перемычки впаивают в нижнюю плату после монтажа деталей. Учитывая высокую плотность монтажа и малую ширину проводников, перед соединением плат между собой обязательно следует еще раз убедиться в отсутствии на них обрывов и замыканий. Между платами должна быть вставлена изолирующая прокладка из тонкого плотного картона.

После включения питания программа переводит микроконтроллер в режим микропотребления и отключает основное питание часовой микросхемы. В отсутствие основного питания эта микросхема также переходит в экономичный режим. "Просыпается" микроконтроллер по внешним запросам прерываний. По прерыванию INT0 от кнопки SB1 начинается вывод текущего времени на индикатор, по прерыванию INT1 от кнопки SB2 - установка времени. В режиме установки времени нажатия на кнопкуSB1 изменяют содержимое регистра часов, а на кнопку SB2 - содержимое регистра минут. Изменение возможно только в сторону увеличения.

Из режима установки времени выходят нажатием на кнопку SB3. При выходе программа обнуляет регистр секунд часовой микросхемы. Для работы этой кнопки программа в режиме установки времени переключает линию PD0 с вывода на ввод и обратно.

Индикатором HG1 программа управляет с помощью восьмиразрядного таймера T0. По запросам прерывания от таймера информация выводится на индикатор, одновременно идет подсчет времени работы индикатора. Максимальная продолжительность его непрерывной работы задана константой TimeDisp и по умолчанию равна 4,7 с. Отсчет времени работы индикатора (показа текущего времени) начинается с момента нажатия на кнопку SB1.

Для удобства проверки хода часов в программе может быть активирован фрагмент, позволяющий включать и выключать индикатор кнопкой SB1. Для этого достаточно в начале файла исходного текста программы Chronometer1 .asm раскомментировать (удалить символ точки с запятой в первой позиции) строку

;#define No_time_limit_for_dispiay

После проверки часов эту строку необходимо закомментировать вновь, так как случайное длительное включение индикатора приводит к быстрой разрядке элемента питания. К статье приложены два варианта загрузочного файла программы. При создании одного (Chronometer1 .hex) указанная строка была закомментирована, а при создании другого (Chronometer1NoUmit.hex) она действовала.

Мигание разделительного двоеточия реализовано программно. Предусмотрено также гашение незначащего нуля в разряде десятков часов. В режиме установки времени ограничение по продолжительности работы индикатора отсутствует, двоеточие выключено.

Интерфейс I2C работает на частоте 100 кГц, его программная реализация взята из книги В. Трамперта "AVR-RISC микроконтроллеры" (Киев: МК-Пресс, 2006). Таблица коммутации разрядов индикатора и таблица кодов цифр находятся в программной памяти микроконтроллера.

В микросхеме DS3231M+ предусмотрена коррекция ухода частоты кварцевого резонатора по мере его старения. Поправка хранится в регистре компенсации старения (Aging Offset Register) микросхемы. В программе хронометра такая коррекция не предусмотрена, а в упомянутый регистр записан 0 (константа SIGN=0). При необходимости можно изменить эту константу. Если часы спешат, ей должно быть присвоено положительное значение (старший двоичный разряд равен нулю), если отстают - отрицательное значение (старший двоичный разряд равен единице). Единица младшего

разряда константы изменяет частоту кварцевого генератора часов приблизительно на 0,1 ppm. После изменения константы следует повторно транслировать программу и загрузить полученный HEX-файл в микроконтроллер.

Конфигурация микроконтроллера ATtiny2313A-sU должна соответствовать таблице. Расширенный байт конфигурации остается неизменным.

tablo

Старший байт Младший байт
kategori Değer kategori Değer
DWEN 1 CKDIV8 0
ESAVE 1 ÇIKIŞ 1
SPIEN 0 SLJT1 1
WDTON 1 SUT0 0
BODLEVEL2 1 CKSEL3 0
BODLEVEL1 1 CKSEL2 1
BODLEVELO 1 CKSEL1 0
RSTDISBL 1 CKSEL0 0

Изготовленный хронометр при включенном индикаторе и напряжении питания 3 В потребляет средний ток 5 мА, в "спящем" режиме - 1 мкА. Температурная коррекция частоты генератора производится каждые 64 с, длительность процесса измерения температуры - 125...200 мс, потребляемый ток в это время - 575 мкА. За год выполняется 492750 измерений температуры и коррекций частоты, на что расходуется около 16 мА·ч электроэнергии. При емкости элемента питания 200 мА·ч его хватит для работы хронометра как минимум в течение двух лет.

После сборки хронометр необходимо подключить к программатору, загрузить в микроконтроллер программу и установить его конфигурацию. После отключения программатора и подключения элемента питания можно нажать на кнопку SB1, на индикатор будет выведено "_0:00" с мигающим двоеточием. Нажав на кнопку SB2, войдите в режим установки времени. Затем нажатиями на кнопку SB1 установите текущий час, а на кнопку SB2 - текущую минуту. Выйдите из режима установки времени, нажав на кнопку SB3. При этом внутренний регистр секунд микросхемы DD1 будет обнулен, что позволяет синхронизировать хронометр с контрольными часами или сигналами точного времени. Снова нажав на кнопку SB1, увидите на индикаторе установленное время.

Для проверки точности хода хронометра придется запастись терпением минимум на месяц. За это время его показания не должны уйти более чем на 3 с. В противном случае можно изменить значение в регистре Aging Offset Register. Как это сделать, рассказано выше.

Проверку точности хода хронометра можно произвести и с помощью точного частотомера, выход частоты 32768 Гц в микросхеме программно активирован. Для измерения частоты между контактами "32768 Гц" и "17" на плате микроконтроллера необходимо временно подключить резистор номиналом 10 кОм, а между контактами "32768 Гц" и "16" - частотомер. Во время проверки для питания хронометра можно использовать два элемента типоразмера АА. Следует также измерить потребляемый ток в разных режимах работы и проверить работу температурной коррекции частоты, при ее нормальной работе подключенный последовательно с источником питания микроамперметр покажет броски потребляемого тока с периодом 64 с.

Программы микроконтроллера можно скачать с ftp://ftp.radio.ru/pub/2016/08/chrono.zip.

Yazar: N. Salimov

Diğer makalelere bakın bölüm Ölçüm teknolojisi.

Oku ve yaz yararlı bu makaleye yapılan yorumlar.

<< Geri

En son bilim ve teknoloji haberleri, yeni elektronikler:

Dünyanın en yüksek astronomi gözlemevi açıldı 04.05.2024

Uzayı ve onun gizemlerini keşfetmek, dünyanın her yerindeki gökbilimcilerin dikkatini çeken bir görevdir. Şehrin ışık kirliliğinden uzak, yüksek dağların temiz havasında yıldızlar ve gezegenler sırlarını daha net bir şekilde açığa çıkarıyor. Dünyanın en yüksek astronomi gözlemevi olan Tokyo Üniversitesi Atacama Gözlemevi'nin açılışıyla astronomi tarihinde yeni bir sayfa açılıyor. Deniz seviyesinden 5640 metre yükseklikte bulunan Atacama Gözlemevi, uzay araştırmalarında gökbilimcilere yeni fırsatlar sunuyor. Bu site, yer tabanlı bir teleskop için en yüksek konum haline geldi ve araştırmacılara Evrendeki kızılötesi dalgaları incelemek için benzersiz bir araç sağladı. Yüksek rakımlı konum daha açık gökyüzü ve atmosferden daha az müdahale sağlasa da, yüksek bir dağa gözlemevi inşa etmek çok büyük zorluklar ve zorluklar doğurur. Ancak zorluklara rağmen yeni gözlemevi gökbilimcilere geniş araştırma olanakları sunuyor. ... >>

Hava akımlarını kullanarak nesneleri kontrol etme 04.05.2024

Robotiğin gelişimi, çeşitli nesnelerin otomasyonu ve kontrolü alanında bize yeni ufuklar açmaya devam ediyor. Son zamanlarda Finlandiyalı bilim adamları, insansı robotları hava akımlarını kullanarak kontrol etmeye yönelik yenilikçi bir yaklaşım sundular. Bu yöntem, nesnelerin manipüle edilme biçiminde devrim yaratmayı ve robotik alanında yeni ufuklar açmayı vaat ediyor. Nesneleri hava akımlarını kullanarak kontrol etme fikri yeni değil, ancak yakın zamana kadar bu tür kavramların uygulanması zordu. Finli araştırmacılar, robotların "hava parmakları" gibi özel hava jetleri kullanarak nesneleri manipüle etmesine olanak tanıyan yenilikçi bir yöntem geliştirdiler. Uzmanlardan oluşan bir ekip tarafından geliştirilen hava akışı kontrol algoritması, hava akışındaki nesnelerin hareketinin kapsamlı bir çalışmasına dayanmaktadır. Özel motorlar kullanılarak gerçekleştirilen hava jeti kontrol sistemi, fiziksel müdahaleye gerek kalmadan nesneleri yönlendirmenize olanak sağlar. ... >>

Safkan köpekler safkan köpeklerden daha sık hastalanmaz 03.05.2024

Evcil hayvanlarımızın sağlığına özen göstermek, her köpek sahibinin hayatının önemli bir yönüdür. Ancak safkan köpeklerin, karma köpeklere göre hastalıklara daha duyarlı olduğu yönünde yaygın bir kanı vardır. Texas Veterinerlik ve Biyomedikal Bilimler Okulu'ndaki araştırmacılar tarafından yürütülen yeni araştırma, bu soruya yeni bir bakış açısı getiriyor. Dog Aging Project (DAP) tarafından 27'den fazla refakatçi köpek üzerinde yürütülen bir araştırma, safkan ve melez köpeklerin çeşitli hastalıklara yakalanma olasılığının genellikle eşit olduğunu ortaya çıkardı. Bazı ırklar belirli hastalıklara karşı daha duyarlı olsa da genel teşhis oranı her iki grup arasında hemen hemen aynıdır. Köpek Yaşlandırma Projesi'nin baş veterineri Dr. Keith Creevy, bazı köpek türlerinde daha yaygın olan, iyi bilinen bazı hastalıkların bulunduğunu ve bunun da safkan köpeklerin hastalıklara karşı daha duyarlı olduğu fikrini desteklediğini belirtiyor. ... >>

Arşivden rastgele haberler

Isıyı ve dokunmayı hisseden protezler 08.06.2018

3D baskı ve en son robotik gelişmeler, protezleri zaten daha konforlu ve işlevsel hale getirdi, ancak şimdi daha önce mevcut olmayan bir kaliteye sahip olacaklar - hassasiyet.

Stanford ve Seul Üniversitelerinden bir araştırma ekibi, insan vücudu gibi dış dünyadan gelen bilgileri işleyebilen yapay bir sinir sistemi geliştirdi. Bu, amputelerde dokunma hissini geri getirecek ve robotlara bir tür refleks yeteneği kazandıracaktır.

Araştırmanın üyesi ve kimya mühendisliği profesörü Zhenan Bao, "Cildi doğal olarak kabul ediyoruz, ancak bu karmaşık bir algı, sinyal ve karar verme sistemidir" diyor ve ekliyor: "Bu yapay duyusal sinir sistemi, deri yaratma yolunda bir adımdır. -gibi duyusal sinir ağları." çeşitli uygulamalar için."

Diğer ilginç haberler:

▪ Seagate'in güncellenmiş Wireless Plus serisi

▪ Fullerene akımı iletmeyecek

▪ Isı dalgaları daha sık hale geldi ve uzadı

▪ Kalabalığı izlerken samuray

▪ 1 GPU çözünürlüğe sahip kamera geliştirildi

Bilim ve teknolojinin haber akışı, yeni elektronik

 

Ücretsiz Teknik Kitaplığın ilginç malzemeleri:

▪ sitenin bölümü Hikayeleriniz. Makale seçimi

▪ yazı allahın izniyle. Popüler ifade

▪ Ortaçağ tarihinin dönemlendirilmesi nasıl sunulmaktadır? Ayrıntılı cevap

▪ Makale Doğanın Büyük Kaşığı. Çocuk Bilim Laboratuvarı

▪ makale Kızılötesi iletişim hattındaki alıcı. Radyo elektroniği ve elektrik mühendisliği ansiklopedisi

▪ makale Molisch renk reaksiyonu. Kimyasal Deneyim

Bu makaleye yorumunuzu bırakın:

Adı:


E-posta isteğe bağlı):


Yorum:





Bu sayfanın tüm dilleri

Ana sayfa | Kütüphane | Makaleler | Site haritası | Site incelemeleri

www.diagram.com.ua

www.diagram.com.ua
2000-2024