Menü English Ukrainian Rusça Ana Sayfa

Hobiler ve profesyoneller için ücretsiz teknik kütüphane Ücretsiz teknik kütüphane


RADYO ELEKTRONİK VE ELEKTRİK MÜHENDİSLİĞİ ANSİKLOPEDİSİ
Ücretsiz kütüphane / Radyo-elektronik ve elektrikli cihazların şemaları

SK-M-24-2'den süpürme jeneratörü. Radyo elektroniği ve elektrik mühendisliği ansiklopedisi

Ücretsiz teknik kütüphane

Radyo elektroniği ve elektrik mühendisliği ansiklopedisi / Ölçüm teknolojisi

makale yorumları makale yorumları

В настоящее время многие заменяют телевизоры третьего поколения более современными. Выбросить старый и неисправный на свалку - жалко. Между тем из отдельных блоков и узлов этих аппаратов можно собрать несложные приборы. Об одном из примеров неожиданного применения селектора телевизионных каналов и рассказано в этой статье.

Из селектора телевизионных каналов СК-М-24-2 можно собрать приставку к осциллографу - генератор качающейся частоты для просмотра АЧХ радио- и телеаппаратуры в широком интервале частот - 0,5...100 МГц. При этом изготовление устройства заключается в основном в выпаивании из платы селектора каналов лишних для данного прибора деталей и добавлением небольшого числа новых.

Этот ГКЧ имеет классическую структурную схему приборов данной группы (рис. 1). В нем имеется два генератора G1 и G2, перестраиваемых по частоте изменением напряжения. Пределы перестройки первого генератора ГКЧ - 150...250 МГц, а второго - 150...160 МГц. Девиация частоты генератора G2 достигается изменением емкости варикапа в колебательном контуре пилообразным напряжением от блока развертки осциллографа. Напряжение высокой частоты с этих генераторов подается на смеситель U1, на выходе которого формируются колебания разностной частоты 0,5...100 МГц, с девиацией выбранной центральной частоты до ±5 МГц. Это напряжение через эмиттерный повторитель А1 и фильтр нижних частот Z1 подается на усилитель А2, а с него через согласующий каскад А3 на выход прибора. Коэффициент усиления А2 и, соответственно, напряжение на выходе ГКЧ, регулируются электронным способом.

SK-M-24-2'den süpürme jeneratörü

Принципиальная схема ГКЧ приведена на рис. 2. Генераторы G1 и G2 собраны соответственно на транзисторах VT1 и VT3 по схеме с емкостной обратной связью, которая осуществляется через конденсаторы С7 и С8. Высокочастотные колебания с генераторов через конденсаторы С1, С2 и диоды VD1, VD2 поступают на эмиттер транзистора VT2, выполняющего роль смесителя. После эмиттерного повторителя на VT4 колебания разностной частоты, выделенные ФНЧ (L3-L5, C15-C18, C21), поступают на транзистор VT5 для усиления. Эмиттерный повторитель на VT6 служит для оптимального согласования усилителя с нагрузкой.

SK-M-24-2'den süpürme jeneratörü
(büyütmek için tıklayın)

Управление центральной частотой ГКЧ производят переменным резистором R26, а подстройку исследуемой полосы частот - R28. Девиацию частоты генератора регулируют переменным резистором R29. Выходное напряжение ГКЧ изменяют регулятором R25. Надо иметь в виду, что максимальная глубина девиации существенно зависит от амплитуды пилообразного напряжения, подаваемого с осциллографа.

Дополнительные детали, помимо имеющихся в селекторе каналов, изображены на схеме более толстыми линиями.

Описанное устройство позволяет осуществлять перестройку в широком диапазоне частот без использования переключателя диапазонов. Рабочий диапазон частот ГКЧ ограничен в интервале 0,5...100 МГц свойствами примененного ФНЧ и необходимым разносом между частотой генераторов и максимальной разностной частотой.

При изготовлении устройства нужно сравнивать его принципиальную схему со схемой СК-М-24-2 [1, 2] и выпаивать из блока лишние детали. Естественно, назначение выводов разъема платы несколько изменено относительно исходного. Дополнительно к оставшимся деталям на плате устанавливают транзисторы VT4, VT6, резисторы R14, R16, R21-R24, конденсаторы С15-С18, С23-С26, катушки L3-L5. При этом все вновь устанавливаемые катушки и конденсаторы берутся из числа выпаянных из платы; к примеру, L3- L5 - "одноименные" катушки от входного фильтра селектора.

Расположение катушек L1 и L2 непосредственно на монтажной плате блока в непосредственной близости от других деталей ухудшает их добротность и, следовательно, снижает стабильность выходной частоты ГКЧ. Поэтому катушки L1 и L2 выпаивают из платы, а в образовавшиеся отверстия впаивают отрезки луженого провода длиной 1 см и уже к их концам вновь припаивают эти катушки, размещая их между платой с деталями и верхней крышкой. Описанное расположение катушек L1 и L2 удобно и при налаживании прибора. Их можно многократно впаивать и выпаивать, не нарушая целостности печатных проводников.

Переменные резисторы - любые малогабаритные. Разъемы XS2 и XS3, в качестве которых использованы малогабаритные гнезда для подключения стереотелефонов со штекером 3,5 мм, устанавливают на стенках жестяной коробочки, прикрепленной снаружи к корпусу устройства со стороны разъема XS1. Конденсаторы С27, С28 (К50-12) и резистор R27 (МЛТ) монтируют навесным способом на контактах переменных резисторов и разъемов.

Основной генератор G1 настраивают подбором индуктивности катушки L1 путем растяжения или сжатия ее витков, и частотомером проверяют диапазон перекрытия генератора на транзисторе VT1. При этом на разъеме XS1 отключают питание генератора G2 на транзисторе VT3.

Аналогично настраивают генератор G2 в указанной полосе частот, отключив питание другого. Эту настройку производят при максимальном напряжении на варикапе VD4.

Фильтр нижних частот L3-L5, C15-C18 настраивают на пропускание сигнала в полосе частот до 110 МГц. После настройки фильтра катушки L3 и L5 имеют по 11 витков с внутренним диаметром 3 мм, L4 - пять витков с диаметром 4 мм.

Принципиальная схема детекторной головки приведена на рис. 3, а схема подключения приборов при измерениях - на рис. 4. Следует иметь в виду, что осциллограф, используемый совместно с ГКЧ, должен обеспечивать "спадающее" пилообразное напряжение (например, широко распространенный осциллограф С1-94). Если в распоряжении радиолюбителя имеется только осциллограф с нарастающей "пилой", то девиацию частоты ГКЧ нужно производить посредством генератора G1.

SK-M-24-2'den süpürme jeneratörü SK-M-24-2'den süpürme jeneratörü

О величине выходного напряжения ГКЧ можно судить по следующим измерениям. Постоянное напряжение на выходе детекторной головки, подключенной к выходу ГКЧ, составляет в средней части диапазона 0,9 В, а по краям диапазона - 0,3 и 1,9 В. Учитывая, что детекторная головка выполнена по схеме удвоения напряжения, переменное напряжение на выходе ГКЧ соответственно вдвое ниже.

Внешний вид приставки показан на рис. 5 (ручки управления с осей переменных резисторов временно сняты).

SK-M-24-2'den süpürme jeneratörü

Edebiyat

  1. Ельяшкевич С. А., Пескин А. Е. Телевизоры 3УСЦТ, 4УСЦТ, 5УСЦТ. Устройство, регулировка, ремонт. - Издание первое. - М.: МП "Символ-Р". - 1993. - 224 с.
  2. Кацнельсон Н., Шпильман Е. "Горизонт Ц-257". Модуль радиоканала. - Радио, 1984, № 9, с. 24-28.

Yazar: N. Herzen, Berezniki, Perm bölgesi.

Diğer makalelere bakın bölüm Ölçüm teknolojisi.

Oku ve yaz yararlı bu makaleye yapılan yorumlar.

<< Geri

En son bilim ve teknoloji haberleri, yeni elektronikler:

Bahçelerdeki çiçekleri inceltmek için makine 02.05.2024

Modern tarımda, bitki bakım süreçlerinin verimliliğini artırmaya yönelik teknolojik ilerleme gelişmektedir. Hasat aşamasını optimize etmek için tasarlanan yenilikçi Florix çiçek seyreltme makinesi İtalya'da tanıtıldı. Bu alet, bahçenin ihtiyaçlarına göre kolayca uyarlanabilmesini sağlayan hareketli kollarla donatılmıştır. Operatör, ince tellerin hızını, traktör kabininden joystick yardımıyla kontrol ederek ayarlayabilmektedir. Bu yaklaşım, çiçek seyreltme işleminin verimliliğini önemli ölçüde artırarak, bahçenin özel koşullarına ve içinde yetişen meyvelerin çeşitliliğine ve türüne göre bireysel ayarlama olanağı sağlar. Florix makinesini çeşitli meyve türleri üzerinde iki yıl boyunca test ettikten sonra sonuçlar çok cesaret vericiydi. Birkaç yıldır Florix makinesini kullanan Filiberto Montanari gibi çiftçiler, çiçeklerin inceltilmesi için gereken zaman ve emekte önemli bir azalma olduğunu bildirdi. ... >>

Gelişmiş Kızılötesi Mikroskop 02.05.2024

Mikroskoplar bilimsel araştırmalarda önemli bir rol oynar ve bilim adamlarının gözle görülmeyen yapıları ve süreçleri derinlemesine incelemesine olanak tanır. Bununla birlikte, çeşitli mikroskopi yöntemlerinin kendi sınırlamaları vardır ve bunların arasında kızılötesi aralığı kullanırken çözünürlüğün sınırlandırılması da vardır. Ancak Tokyo Üniversitesi'ndeki Japon araştırmacıların son başarıları, mikro dünyayı incelemek için yeni ufuklar açıyor. Tokyo Üniversitesi'nden bilim adamları, kızılötesi mikroskopinin yeteneklerinde devrim yaratacak yeni bir mikroskobu tanıttı. Bu gelişmiş cihaz, canlı bakterilerin iç yapılarını nanometre ölçeğinde inanılmaz netlikte görmenizi sağlar. Tipik olarak orta kızılötesi mikroskoplar düşük çözünürlük nedeniyle sınırlıdır, ancak Japon araştırmacıların en son geliştirmeleri bu sınırlamaların üstesinden gelmektedir. Bilim insanlarına göre geliştirilen mikroskop, geleneksel mikroskopların çözünürlüğünden 120 kat daha yüksek olan 30 nanometreye kadar çözünürlükte görüntüler oluşturmaya olanak sağlıyor. ... >>

Böcekler için hava tuzağı 01.05.2024

Tarım ekonominin kilit sektörlerinden biridir ve haşere kontrolü bu sürecin ayrılmaz bir parçasıdır. Hindistan Tarımsal Araştırma Konseyi-Merkezi Patates Araştırma Enstitüsü'nden (ICAR-CPRI) Shimla'dan bir bilim insanı ekibi, bu soruna yenilikçi bir çözüm buldu: rüzgarla çalışan bir böcek hava tuzağı. Bu cihaz, gerçek zamanlı böcek popülasyonu verileri sağlayarak geleneksel haşere kontrol yöntemlerinin eksikliklerini giderir. Tuzak tamamen rüzgar enerjisiyle çalışıyor, bu da onu güç gerektirmeyen çevre dostu bir çözüm haline getiriyor. Eşsiz tasarımı, hem zararlı hem de faydalı böceklerin izlenmesine olanak tanıyarak herhangi bir tarım alanındaki popülasyona ilişkin eksiksiz bir genel bakış sağlar. Kapil, "Hedef zararlıları doğru zamanda değerlendirerek hem zararlıları hem de hastalıkları kontrol altına almak için gerekli önlemleri alabiliyoruz" diyor ... >>

Arşivden rastgele haberler

1 THz'de entegre amplifikatör 04.11.2014

Uzmanlık alanlarından biri ileri mikroelektronik olan Northrop Grumman Corporation, mikrodalga entegre devrelerinin geliştirilmesinde bir atılım duyurdu.

Northrop Grumman uzmanları, 10 transistör aşaması içeren ve 1012 GHz frekansında çalışan entegre bir amplifikatör oluşturdu. Bu bir rekordur. Bu arada, 2012'de 850 GHz'e eşit olan önceki dünya rekoru da Northrop Grumman'a aitti.

Terahertz elektromanyetik dalga aralığı, yüksek bant genişliği nedeniyle iletişim sistemleri için çekicidir, ancak gelişimi, bu kadar yüksek frekanslarda çalışabilen bir eleman tabanının olmaması nedeniyle engellenmektedir. Karşılaştırma için: modern kablosuz ağlar, gigahertz mertebesinde, yani bin kat daha az frekanslarda çalışır.

Northrop Grumman çipi, indiyum fosfitten yapılmış 25 nm kapılı yüksek elektron hareketli transistörler kullanır. 1 THz frekansında, bu transistörün kazancı 10 dB'dir ve 1,03 THz frekansında 9 dB'dir.

Geliştirme, ABD Savunma İleri Araştırma Projeleri Ajansı (DARPA) tarafından finanse edilen bir program kapsamında yapıldı. 670 GHz, 850 GHz ve 1 THz'de çalışan transistör devrelerinin oluşturulmasını içeren üç aşamalı bir projenin doruk noktasıdır. Beş yıl içinde, üç dönüm noktasının tümü Northrop Grumman tarafından başarıyla gerçekleştirildi.

Northrop Grumman'ın başarısının gözetleme, radar, iletişim, atmosferik tarama, radyo astronomi ve tıpta yeni teknolojilere yol açtığı söyleniyor.

Diğer ilginç haberler:

▪ Güvenilir kara kutu kameraları

▪ Drone'lar jestlerle kontrol ediliyor

▪ Stonehenge sağlam seraplar yaratıyor

▪ Tek elektrikli araba

▪ Köpekler kurtlardan daha akıllıdır

Bilim ve teknolojinin haber akışı, yeni elektronik

 

Ücretsiz Teknik Kitaplığın ilginç malzemeleri:

▪ İlk yardımın temelleri (OPMP) sitesinin bölümü. Makale seçimi

▪ John von Neumann'ın makalesi. Ünlü aforizmalar

▪ makale Wehrmacht askerlerine resmi olarak hangi ilaç verildi? ayrıntılı cevap

▪ Makale Baş Mühendisi. İş tanımı

▪ makale LED'lerde Spektrum analizörü. Radyo elektroniği ve elektrik mühendisliği ansiklopedisi

▪ Makale Sirk numarası. fiziksel deney

Bu makaleye yorumunuzu bırakın:

Adı:


E-posta isteğe bağlı):


Yorum:





Bu sayfanın tüm dilleri

Ana sayfa | Kütüphane | Makaleler | Site haritası | Site incelemeleri

www.diagram.com.ua

www.diagram.com.ua
2000-2024