Menü English Ukrainian Rusça Ana Sayfa

Hobiler ve profesyoneller için ücretsiz teknik kütüphane Ücretsiz teknik kütüphane


RADYO ELEKTRONİK VE ELEKTRİK MÜHENDİSLİĞİ ANSİKLOPEDİSİ
Ücretsiz kütüphane / Radyo-elektronik ve elektrikli cihazların şemaları

Bir kuvars saatin hassasiyetini ayarlamak. Radyo elektroniği ve elektrik mühendisliği ansiklopedisi

Ücretsiz teknik kütüphane

Radyo elektroniği ve elektrik mühendisliği ansiklopedisi / Saatler, zamanlayıcılar, röleler, yük anahtarları

makale yorumları makale yorumları

Применение кварцевых резонаторов в электронных часах не всегда обеспечивает желаемую точность хода. Предлагаемая доработка сделает ход часов точнее.

Подстройка точности хода часов с помощью частотомера крайне неудобна, занимает много времени и требует достаточно высокой квалификации. Поэтому я предлагаю простое устройство, которое не требует перестройки кварцевого генератора, а всего лишь компенсирует погрешность один раз в сутки. При этом не требуются никакие приборы, достаточно одной отвертки. На практике устройство оказалось весьма эффективным. После первого шага подстройки погрешность хода настольных часов "Электроника-18" составила всего лишь 1 с в месяц.

Компенсатор (рис. 1) предназначен для работы в часах, выполненных на микросхемах серии К176 [1].

Kuvars saatin hassasiyetini ayarlama

Ежедневно в 00 часов 00 минут на выводе 3 микросхемы К176ИЕ13 появляется короткий импульс низкого уровня длительностью 250 мс. Он служит для пересчета дней недели в часах с календарем. Этот сигнал поступает на вход одновибратора, выполненного на таймере DA1. Одновибратор запускается и формирует на выходе (вывод 3) импульс высокого уровня. Длительность его определяется времязадающей цепью R1R2C1. Используя конденсатор С1 с малым током утечки, на микросхеме КР1006ВИ1 можно получить длительность импульсов с высокой точностью. В предлагаемом устройстве погрешность составляет не более 0,3% во всем диапазоне длительности формируемых импульсов от 0,45 с до 5,6 с.

Сигнал с выхода одновибратора поступает на вход коррекции микросхемы К176ИЕ13 (вывод 6) и производит обнуление минут и секунд. Этот же сигнал обнуляет и счетчик К176ИЕ12 (на схеме это соединение не показано), что подстраивает его с точностью до фазы секундных импульсов. В зависимости от длительности импульса, которая определяется положением движка подстроечного резистора R2, будет меняться и величина коррекции часов.

Диод VD1 служит для развязки. Конденсатор С2 позволяет избежать влияния внешних помех и пульсаций напряжения питания на точность работы таймера [2]. Устройство потребляет ток не более 4 мА при напряжении питания 9 В. Напряжение питания может быть в пределах от 5 до 16,5 В [2].

Компенсатор собран на односторонней печатной плате из фольгированного стеклотекстолита (рис. 2).

Kuvars saatin hassasiyetini ayarlama

Постоянный резистор R1 - МЛТ, подстроечный резистор R2 - СПЗ-29ВМ. Конденсатор С1 - К73-17, С2 - К10-7 или KM. VD1 - любой маломощный диод. Длина соединительных проводов должна быть не более 10...15см.

Печатную плату крепят к часам с помощью двух резьбовых втулок винтами М2,5. Крышка спаяна из односторонне фольгированного гетинакса толщиной 1 мм. Ее крепят к плате винтом через резьбовую втулку.

Для того чтобы точность хода можно было регулировать как в плюс, так и в минус, кварцевый генератор настраивают с помощью частотомера на частоту не 32768 Гц, как обычно, а на частоту 32769 Гц, чтобы часы заведомо спешили на 2...3 с в сутки. Если же часы спешат, то специально увеличивать частоту генератора не нужно. Настройку лучше производить путем измерения периода секундных импульсов с дискретностью 1 мкс. Значение периода должно быть 999970 ±5 мкс. Это достаточно грубая настройка - она не требует длительного прогрева частотомера и часов, поэтому много времени не занимает.

При среднем положении движка резистора R2 указанная частота кварцевого генератора соответствует минимальной погрешности на момент настройки. В крайних положениях движка часы корректируются на +2,5 с или -2,5 с в сутки.

С помощью частотомера в режиме измерения длительности импульса всю окружность резистора R2 нужно разбить на деления с шагом 0,5 с в сутки. Таким образом, например, если за 10 суток часы отстали на 5 с, то для их коррекции нужно повернуть движок в сторону плюса (влево по схеме) на одно деление.

Процесс подстройки хода часов заключается в следующем. Установите движок R2 в среднее положение. В определенное время, например, в 18 ч 00 мин нажмите кнопку коррекции часов по сигналам точного времени. Через 10 суток в 18 ч 00 мин зафиксируйте, на сколько секунд ушли часы. Разделите это значение на 5, и вы получите количество делений, на которое нужно повернуть движок резистора R2.

С небольшой доработкой предлагаемый электронный блок можно применить в любых часах, где есть будильник и кнопка обнуления секунд. В этом случае запуск одновибратора будет происходить по сигналу будильника.

Edebiyat

  1. Бирюков С. А. Электронные часы на МОП интегральных микросхемах. - М.: Радио и связь, 1993.
  2. Kolombet E.A. Zamanlayıcılar. - M.: Radyo ve iletişim, 1983.

Автор: Д.Каширских, г.Киров

Diğer makalelere bakın bölüm Saatler, zamanlayıcılar, röleler, yük anahtarları.

Oku ve yaz yararlı bu makaleye yapılan yorumlar.

<< Geri

En son bilim ve teknoloji haberleri, yeni elektronikler:

Bahçelerdeki çiçekleri inceltmek için makine 02.05.2024

Modern tarımda, bitki bakım süreçlerinin verimliliğini artırmaya yönelik teknolojik ilerleme gelişmektedir. Hasat aşamasını optimize etmek için tasarlanan yenilikçi Florix çiçek seyreltme makinesi İtalya'da tanıtıldı. Bu alet, bahçenin ihtiyaçlarına göre kolayca uyarlanabilmesini sağlayan hareketli kollarla donatılmıştır. Operatör, ince tellerin hızını, traktör kabininden joystick yardımıyla kontrol ederek ayarlayabilmektedir. Bu yaklaşım, çiçek seyreltme işleminin verimliliğini önemli ölçüde artırarak, bahçenin özel koşullarına ve içinde yetişen meyvelerin çeşitliliğine ve türüne göre bireysel ayarlama olanağı sağlar. Florix makinesini çeşitli meyve türleri üzerinde iki yıl boyunca test ettikten sonra sonuçlar çok cesaret vericiydi. Birkaç yıldır Florix makinesini kullanan Filiberto Montanari gibi çiftçiler, çiçeklerin inceltilmesi için gereken zaman ve emekte önemli bir azalma olduğunu bildirdi. ... >>

Gelişmiş Kızılötesi Mikroskop 02.05.2024

Mikroskoplar bilimsel araştırmalarda önemli bir rol oynar ve bilim adamlarının gözle görülmeyen yapıları ve süreçleri derinlemesine incelemesine olanak tanır. Bununla birlikte, çeşitli mikroskopi yöntemlerinin kendi sınırlamaları vardır ve bunların arasında kızılötesi aralığı kullanırken çözünürlüğün sınırlandırılması da vardır. Ancak Tokyo Üniversitesi'ndeki Japon araştırmacıların son başarıları, mikro dünyayı incelemek için yeni ufuklar açıyor. Tokyo Üniversitesi'nden bilim adamları, kızılötesi mikroskopinin yeteneklerinde devrim yaratacak yeni bir mikroskobu tanıttı. Bu gelişmiş cihaz, canlı bakterilerin iç yapılarını nanometre ölçeğinde inanılmaz netlikte görmenizi sağlar. Tipik olarak orta kızılötesi mikroskoplar düşük çözünürlük nedeniyle sınırlıdır, ancak Japon araştırmacıların en son geliştirmeleri bu sınırlamaların üstesinden gelmektedir. Bilim insanlarına göre geliştirilen mikroskop, geleneksel mikroskopların çözünürlüğünden 120 kat daha yüksek olan 30 nanometreye kadar çözünürlükte görüntüler oluşturmaya olanak sağlıyor. ... >>

Böcekler için hava tuzağı 01.05.2024

Tarım ekonominin kilit sektörlerinden biridir ve haşere kontrolü bu sürecin ayrılmaz bir parçasıdır. Hindistan Tarımsal Araştırma Konseyi-Merkezi Patates Araştırma Enstitüsü'nden (ICAR-CPRI) Shimla'dan bir bilim insanı ekibi, bu soruna yenilikçi bir çözüm buldu: rüzgarla çalışan bir böcek hava tuzağı. Bu cihaz, gerçek zamanlı böcek popülasyonu verileri sağlayarak geleneksel haşere kontrol yöntemlerinin eksikliklerini giderir. Tuzak tamamen rüzgar enerjisiyle çalışıyor, bu da onu güç gerektirmeyen çevre dostu bir çözüm haline getiriyor. Eşsiz tasarımı, hem zararlı hem de faydalı böceklerin izlenmesine olanak tanıyarak herhangi bir tarım alanındaki popülasyona ilişkin eksiksiz bir genel bakış sağlar. Kapil, "Hedef zararlıları doğru zamanda değerlendirerek hem zararlıları hem de hastalıkları kontrol altına almak için gerekli önlemleri alabiliyoruz" diyor ... >>

Arşivden rastgele haberler

1 Tbps veya daha yüksek kablosuz veri anteni 13.03.2013

Amerikalı bilim adamları tarafından geliştirilen grafen anten, 1 Tbps ve daha yüksek kablosuz veri aktarım hızları sağlayabiliyor ve 1 m'ye kadar mesafelerde kullanılabildiği gibi aynı kristal veya baskılı devre elemanları arasında veri iletimi için de kullanılabiliyor. yazı tahtası. Georgia Institute of Technology'deki bilim adamları, Technology Review'a göre, saniyede bir terabitten daha fazla kablosuz veri aktarım hızı sağlayabilen, yani saniyede birkaç HD çözünürlüklü film iletebilen bir grafen kablosuz anten tasarladılar.

Georgia Institute of Technology kablosuz bağlantı teknoloji laboratuvarı başkanı Ian Akyıldız, "Bu inanılmaz bir hız. Bugün, bir bilgisayardan diğerine veri kopyalamak saatler alıyor. Yeni teknoloji prosedürü birkaç saniyeye indirebilir" dedi. Bununla birlikte, bir grafen anten belirtilen hızı kısa bir mesafede sağlayabilir - sadece yaklaşık 1 m Mesafe ne kadar küçükse, hız o kadar yüksek olabilir. Araştırmacılar, teorik olarak birkaç santimetre mesafede 100 Tbps'ye kadar hızlara ulaşılabileceğini hesapladılar.

Grafen, bal peteği yapısına sahip iki boyutlu bir karbon atomu kafesidir. Böyle bir kafesteki elektronlar neredeyse dirençsiz hareket eder - yarı iletkenden 50-500 kat daha hızlı. Bu malzeme, yeni nesil elektronik bileşenlerin oluşturulması için umut verici olarak kabul edilir. Araştırma ekibine göre, bir anten oluşturmak için grafenin, terahertz frekansında veri iletimine izin verecek 10 ila 100 nm genişliğinde ve 1 mikron uzunluğunda dar şeritler halinde şekillendirilmesi gerekiyor. Terahertz frekansındaki elektromanyetik dalgalar, verilerin iletilmesine ve alınmasına izin verecek olan grafen şeritlerinin yüzeyinde atomların salınımı olan plazmonik dalgaların ortaya çıkmasına neden olacaktır.

Grafen antenler, sadece iki sistemi birbirine bağlamak için değil, aynı yarı iletken üzerindeki nano ölçekli bileşenleri bağlamak için de kullanılabilir. IBM Fellow Phaedon Avouris, "Grafen anten, geleneksel bir tel antenden çok daha küçük yapılabilir. Boyut olarak bir mikrometre veya birkaç nanometre olabilir. Sonuç olarak, böyle bir anten çok küçük nesnelere yerleştirilebilir" dedi. New York'taki IBM Araştırma Laboratuvarı'nda nanoteknoloji araştırmalarına liderlik eden Emeritus. Ancak böyle bir anten yaratmadan önce bilim insanlarının birçok sorunu çözmesi gerekiyor. "Anten kendi başına çalışamaz. Jeneratörler ve dedektörler, amplifikatörler ve filtreler gibi birçok başka bileşene bağlıdır. eksiksiz bir cihaz" - araştırmacılar açıkladı.

Georgia Institute of Technology'den bir grup bilim adamı, bir yıl içinde bir prototip anten oluşturmayı ve ardından buna diğer bileşenleri eklemeyi planlıyor. Çalışmanın 2013 yılında IEEE Journal of Selected Areas in Communication dergisinde yayınlanması planlanmaktadır.

Diğer ilginç haberler:

▪ Yeni 32 bit TMP92CZ26XBG işlemci

▪ Ofis yöneticileri yerine yapay zeka

▪ Arıların duyguları ve ruh hali değişimleri vardır.

▪ Bir kişinin maksimum yaşı olarak adlandırıldı

▪ İlk GaN güç modülü 0,6-5,5 volt, 30 amper, 3 MHz

Bilim ve teknolojinin haber akışı, yeni elektronik

 

Ücretsiz Teknik Kitaplığın ilginç malzemeleri:

▪ Sitenin Sanat videosu bölümü. Makale seçimi

▪ Vralman makalesi. Popüler ifade

▪ makale Hangi dünyaca ünlü mucide okulda aptal denildi? ayrıntılı cevap

▪ makale Sosyal ortaklık

▪ makale Dinistörün ayarlanabilir analogu. Radyo elektroniği ve elektrik mühendisliği ansiklopedisi

▪ makale Çığ modunda güçlü transistör. Radyo elektroniği ve elektrik mühendisliği ansiklopedisi

Bu makaleye yorumunuzu bırakın:

Adı:


E-posta isteğe bağlı):


Yorum:





Bu sayfanın tüm dilleri

Ana sayfa | Kütüphane | Makaleler | Site haritası | Site incelemeleri

www.diagram.com.ua

www.diagram.com.ua
2000-2024