Menü English Ukrainian Rusça Ana Sayfa

Hobiler ve profesyoneller için ücretsiz teknik kütüphane Ücretsiz teknik kütüphane


RADYO ELEKTRONİK VE ELEKTRİK MÜHENDİSLİĞİ ANSİKLOPEDİSİ
Ücretsiz kütüphane / Radyo-elektronik ve elektrikli cihazların şemaları

Mikroişlemci güç devrelerinde oksit kapasitör kullanımının özellikleri

Ücretsiz teknik kütüphane

Radyo elektroniği ve elektrik mühendisliği ansiklopedisi / Bilgisayarlar

makale yorumları makale yorumları

Для повышения надежности работы компьютера сильно нагревающиеся узлы (процессоры, чипсет, транзисторы блока питания) снабжают теплоотводами, устанавливают дополнительные вентиляторы в системный блок и на винчестеры. Но оказывается, тепловыделяющими элементами являются и оксидные конденсаторы фильтров питания этих узлов. Отчего это происходит и что надо сделать, чтобы предотвратить их нагрев, рассказывается в статье.

В микропропроцессоре к шине питания подключены миллионы транзисторов цифровых узлов, работающих по заданным программами алгоритмам, с суммарным потреблением мощности, достигающим нескольких десятков ватт. В первом приближении их подключения к шине питания являются случайными, поэтому в дальнейшем, для упрощения изложения, будем называть их шумами [1].

Длительность фронта изменения состояния ключей в микропроцессоре не превышает 10-8 с, поэтому, несколько занижая ширину спектра генерируемых шумов (токов), можно определить его верхнюю границу frp, как более 100 МГц (frp > 1/τф [2]), а полосу частот - от 0 до более чем 100 МГц. В этом диапазоне сосредоточено 90 % мощности генерируемых шумов. Учитывая случайный (шумоподобный) характер процессов, реально этот диапазон еще шире.

Таким образом, микропроцессоры являются сложными нагрузками для источников питания и генерируют в цепях питания токи широкого спектрального состава (сотни мегагерц) и большой мощности (до 5...20 Вт). Максимальные токи генерируются при 100 %-ной загрузке микропроцессора.

Рассмотрим для примера схему цепи питания ядра микропроцессора (рис. 1) в системной плате BE6-II фирмы Abit (она анонсирована как плата для разгона процессоров).

Mikroişlemci güç devrelerinde oksit kapasitör kullanımının özellikleri

Напряжение питания 2,05 В через дроссель L1 и фильтр из трех оксидных конденсаторов С1-C3 емкостью 1500 мкФ подается на выводы питания процессора. Конструктивная емкость См имеет малую собственную индуктивность и поэтому хорошо шунтирует высокочастотные (более 100 МГц) составляющие мощности генерируемых шумов.

В качестве С1- C3 применены высококачественные гелевые оксидные конденсаторы с предельной рабочей температурой +105 °С, способные рассейвать мощность 0,5...5 Вт. Возможно, это и позволило производителям не обращать внимания на режим их работы.

Измерения показали, что в процессе длительной работы компьютера, в котором установлены два корпусных вентилятора (в блоке питания и дополнительный), процессор Celeron с вентилятором Golden Orb и видеокарта с вентилятором, нагрев корпусов упомянутых конденсаторов доходил до +60...80 °С. При высоких температурах наружного воздуха последовательно вышли из строя два из трех конденсаторов фильтра: вначале произошло механическое разрушение корпуса одного из них, после чего компьютер начал периодически "зависать" во время работы, затем то же самое случилось со вторым конденсатором и система начала отказывать уже на этапе обработки BIOS. Причина "зависаний" - появление в цепях питания выбросов напряжения, соизмеримых с амплитудой импульсов управляющих сигналов. Такие выбросы проникают в цепи управления или данных и нарушают работу процессора и целостность данных.

По температуре корпусов оксидных конденсаторов можно заключить, что они рассеивают мощность около 3...5 Вт В чем же причины нагрева? Как известно, нагрев оксидного конденсатора определяется мощностью, выделяемой в его объеме, т. е. потерями в диэлектрике и металлических элементах. Потери описываются тангенсом угла потерь: tg δс = Рп/Р = (Рм + Рд)/Р = tg δМ + tg δД, где Рп - мощность потерь; Рм - мощность потерь в металле; Рд - мощность потерь в диэлектрике; tg δМ и tg δД - тангенс угла потерь для металла и диэлектрика соответственно. Типовое значение tg δС оксидного конденсатора - (1000...2000)-10-4 на частоте 50 Гц. При таких его значениях от 10 до 20 % мощности низкочастотных токов переходят в тепло, а учитывая, что спектр фильтруемых токов (напряжений) простирается до десятков мегагерц и tg δС увеличивается с ростом частоты (tg δМ = Rп2πfС), в тепло переходит более 80% энергии шума, генерируемой процессором и фильтруемой цепями питания.

Как влияет на работу оксидного конденсатора повышение температуры?

Сопротивление изоляции с ростом температуры на 10 °С падает в 1,26.. .2 раза, а при повышении температуры до предельной +105 °С - в 7...350 раз (минимальные значения соответствуют неорганическим диэлектрикам, а максимальные - органическим). Электрическая прочность конденсатора снижается в три раза при повышении частоты приложенного напряжения в 10 раз (при номинальной мощности потерь) [3].

Все сказанное выше говорит о том, что использовать оксидные конденсаторы в цепях питания процессоров без принятия специальных мер недопустимо. Несоблюдение этого условия приводит к снижению надежности системной платы и может спровоцировать их выход из строя даже в рабочем интервале температур.

Напрашивается простое решение: для предотвращения проникания в оксидные конденсаторы высокочастотных составляющих (вплоть до десятков мегагерц) установить в непосредственной близости от выводов процессора бескорпусный керамический конденсатор емкостью 0,033 мкФ, а в качестве преграды низкочастотным составляющим (до сотен килогерц) включить керамический конденсатор емкостью 3,3...4,7 мкФ. Из-за малого tg δС таких конденсаторов шунтированная энергия не переходит в тепло. Суммарная реактивная мощность этих конденсаторов - 30 ВАр.

Измененная схема цепи питания ядра микропроцессора показана на рис. 2.

Mikroişlemci güç devrelerinde oksit kapasitör kullanımının özellikleri

Доработка была выполнена на данной плате, что привело к снижению температуры корпусов оксидных конденсаторов до +20...30°С. Плата успешно выдержала испытания в жаркий период лета 2002 г. при температуре воздуха в помещении +40...50 °С. Кроме того, снизился уровень излучаемых компьютером помех.

Подобной доработке целесообразно подвергнуть системные платы компьютеров, используемых в качестве серверов, других компьютеров, работающих со 100 %-ной нагрузкой (например, в системах распределенных вычислений), а также видеокарты, т. е. все узлы, в которых процессоры работают с предельной нагрузкой. Полезна она и в компьютерах, используемых не столь интенсивно: снижение тепловыделения в системном блоке на 10...25 Вт благоприятно скажется на надежности работы системы.

Edebiyat

  1. Ott Henry W. Noise reduction techniques in electronic system. - John Wiley & Sons, N-Y 1976.
  2. Гоноровский И. С. Радиотехнические цепи и сигналы. 4.1. - М.: Советское радио, 1967.
  3. Дулин В. Ж., Жук М. С. Справочник по элементам радиоэлектронных устройств. - М.: Энергия, 1977.

Автор: А.Сорокин, г.Радужный Владимирской обл.

Diğer makalelere bakın bölüm Bilgisayarlar.

Oku ve yaz yararlı bu makaleye yapılan yorumlar.

<< Geri

En son bilim ve teknoloji haberleri, yeni elektronikler:

Bahçelerdeki çiçekleri inceltmek için makine 02.05.2024

Modern tarımda, bitki bakım süreçlerinin verimliliğini artırmaya yönelik teknolojik ilerleme gelişmektedir. Hasat aşamasını optimize etmek için tasarlanan yenilikçi Florix çiçek seyreltme makinesi İtalya'da tanıtıldı. Bu alet, bahçenin ihtiyaçlarına göre kolayca uyarlanabilmesini sağlayan hareketli kollarla donatılmıştır. Operatör, ince tellerin hızını, traktör kabininden joystick yardımıyla kontrol ederek ayarlayabilmektedir. Bu yaklaşım, çiçek seyreltme işleminin verimliliğini önemli ölçüde artırarak, bahçenin özel koşullarına ve içinde yetişen meyvelerin çeşitliliğine ve türüne göre bireysel ayarlama olanağı sağlar. Florix makinesini çeşitli meyve türleri üzerinde iki yıl boyunca test ettikten sonra sonuçlar çok cesaret vericiydi. Birkaç yıldır Florix makinesini kullanan Filiberto Montanari gibi çiftçiler, çiçeklerin inceltilmesi için gereken zaman ve emekte önemli bir azalma olduğunu bildirdi. ... >>

Gelişmiş Kızılötesi Mikroskop 02.05.2024

Mikroskoplar bilimsel araştırmalarda önemli bir rol oynar ve bilim adamlarının gözle görülmeyen yapıları ve süreçleri derinlemesine incelemesine olanak tanır. Bununla birlikte, çeşitli mikroskopi yöntemlerinin kendi sınırlamaları vardır ve bunların arasında kızılötesi aralığı kullanırken çözünürlüğün sınırlandırılması da vardır. Ancak Tokyo Üniversitesi'ndeki Japon araştırmacıların son başarıları, mikro dünyayı incelemek için yeni ufuklar açıyor. Tokyo Üniversitesi'nden bilim adamları, kızılötesi mikroskopinin yeteneklerinde devrim yaratacak yeni bir mikroskobu tanıttı. Bu gelişmiş cihaz, canlı bakterilerin iç yapılarını nanometre ölçeğinde inanılmaz netlikte görmenizi sağlar. Tipik olarak orta kızılötesi mikroskoplar düşük çözünürlük nedeniyle sınırlıdır, ancak Japon araştırmacıların en son geliştirmeleri bu sınırlamaların üstesinden gelmektedir. Bilim insanlarına göre geliştirilen mikroskop, geleneksel mikroskopların çözünürlüğünden 120 kat daha yüksek olan 30 nanometreye kadar çözünürlükte görüntüler oluşturmaya olanak sağlıyor. ... >>

Böcekler için hava tuzağı 01.05.2024

Tarım ekonominin kilit sektörlerinden biridir ve haşere kontrolü bu sürecin ayrılmaz bir parçasıdır. Hindistan Tarımsal Araştırma Konseyi-Merkezi Patates Araştırma Enstitüsü'nden (ICAR-CPRI) Shimla'dan bir bilim insanı ekibi, bu soruna yenilikçi bir çözüm buldu: rüzgarla çalışan bir böcek hava tuzağı. Bu cihaz, gerçek zamanlı böcek popülasyonu verileri sağlayarak geleneksel haşere kontrol yöntemlerinin eksikliklerini giderir. Tuzak tamamen rüzgar enerjisiyle çalışıyor, bu da onu güç gerektirmeyen çevre dostu bir çözüm haline getiriyor. Eşsiz tasarımı, hem zararlı hem de faydalı böceklerin izlenmesine olanak tanıyarak herhangi bir tarım alanındaki popülasyona ilişkin eksiksiz bir genel bakış sağlar. Kapil, "Hedef zararlıları doğru zamanda değerlendirerek hem zararlıları hem de hastalıkları kontrol altına almak için gerekli önlemleri alabiliyoruz" diyor ... >>

Arşivden rastgele haberler

Şeffaf ve gerilebilir lityum iyon pil 03.03.2013

Son on yılda mühendisler, şeffaf ekranların ve diğer dijital cihaz bileşenlerinin üretimine izin veren birçok teknoloji geliştirdiler. Şeffaf ve esnek güç kaynakları oluşturmak, bir pildeki elektrotları görünmez olacak kadar ince yapmak ve hala gerilebilirken yapmak son derece zor olduğundan, daha zorlu bir iştir.

Urbana'daki (ABD) Illinois Üniversitesi'nden John Rogers (John Rogers) ve meslektaşları, bir "yılan"a örülmüş esnek iletkenler kullanarak bir lityum iyon pili tek bir bütün halinde bağlanmış mikroskobik mikro kapsüllerden oluşan bir mozaiğe dönüştürerek bu sorunu çözdüler. ". Araştırmacıların açıkladığı gibi, bu tasarımın aynı anda birkaç avantajı var.

İlk olarak, kapsüllerin küçük boyutu ve bunları birbirine bağlayan iletkenler, pili tamamen şeffaf hale getirmeyi mümkün kılıyor. Ek olarak, bireysel mikro hücreler arasındaki esnek iletkenler, bu tür bir pilin iletkenleri veya kontak pedlerini kırma riski olmadan esnemesine izin verir. Bilim adamları, temas mikro pedleri yapmak için bakır ve alüminyum, elektrolit olarak polimer jel ve "yılanları" örmek için bakır mikro teller kullanarak bu tür pillerin birkaç prototipini yaptılar.

Rogers ve meslektaşları pilleri şarj ettiler, onlara bir LED bağladılar ve pilin ne kadar uzatılabileceğini izlediler. Buluşlarının herhangi bir deformasyona sakince dayandığı ve özellik kaybı olmadan üç kez esneyebildiği ortaya çıktı. Araştırmacılar, bu güç kaynağının geliştirdikleri kablosuz "şarj cihazı" ile birlikte gelecekte tamamen şeffaf ve esnek cep telefonları ve tabletlerin temeli olabileceğine inanıyorlar.

Diğer ilginç haberler:

▪ Konuşan tarayıcı metni konuşacak

▪ Bir asteroit üzerinde buz

▪ Büyüyen mamut kas dokusu

▪ UFS hafıza kartları

▪ elektronik yazı tahtası

Bilim ve teknolojinin haber akışı, yeni elektronik

 

Ücretsiz Teknik Kitaplığın ilginç malzemeleri:

▪ sitenin bölümü Mikro devrelerin uygulanması. Makale seçimi

▪ makale Bessemer süreci. Buluş ve üretim tarihi

▪ makale Eter nasıl çalışır? ayrıntılı cevap

▪ makale Kaynak makinesi ile çalışma. İş güvenliğine ilişkin standart talimat

▪ makale Kaynak - elektronik ile. Radyo elektroniği ve elektrik mühendisliği ansiklopedisi

▪ makale Meç üzerindeki kartlar. Odak Sırrı

Bu makaleye yorumunuzu bırakın:

Adı:


E-posta isteğe bağlı):


Yorum:





Bu sayfanın tüm dilleri

Ana sayfa | Kütüphane | Makaleler | Site haritası | Site incelemeleri

www.diagram.com.ua

www.diagram.com.ua
2000-2024