Menü English Ukrainian Rusça Ana Sayfa

Hobiler ve profesyoneller için ücretsiz teknik kütüphane Ücretsiz teknik kütüphane


Roket uçağı sınıfı S4A. Modelciler için ipuçları

Modelleme

Rehber / Radyo kontrol ekipmanı

makale yorumları makale yorumları

На первый взгляд ракетоплан класса SА4 может показаться примитивным. Но идеи, реализованные в нем, заслуживают внимания. И, по-моему, будут интересны ракетомоделистам.

Данная модель относится к ракетопланам контейнерного типа. Его планирующая часть представляет миниатюрный складной летательный аппарат, укладывающийся для взлета в носитель (контейнер).

Рейка-фюзеляж - коническая трубка из углепластика с наибольшим диаметром 4 мм и длиной 304 мм без учета толщины шпангоута. Для нее автор приспособил обыкновенный хлыст (самое тонкое звено) от складной рыболовной удочки. Передней частью (большим диаметром) его вклеивают в шпангоут головного обтекателя. Он тоже конической формы, склеен из тонкого прессшпана (электротехнического картона), носовая часть ("макушка") - выточена из липы. Посадочная юбка шириной 20 мм и диаметром 31 мм также выполнена из прессшпана и соединена с головным обтекателем посредством шпангоута, вырезанного из фанеры толщиной 1,5 мм, для облегчения в нем произвольно просверлены семь отверстий. Место соединения рейки-фюзеляжа и шпангоута усилено косынкой. К последней приклеен контейнер системы спасения носителя - бумажная трубка диаметром 9 мм и длиной 20 мм.

S4A sınıfı roket uçağı
Модель ракетоплана класса S4А А.Совкова (нажмите для увеличения): 1 - головной обтекатель; 2 - "посадочная" юбка; 3 - рейка-фюзеляж; 4 - крепежная плата крыла (состоит из элементов а, б, в); 5 - крючок; 6 - резинка установки крыла; 7 - упор; 8 - передняя часть крыла; 9 - резинка раскрытия крыла (обеспечение угла "V"); 10 - резинка раскрытия элементов крыла; 11 - складывающаяся (задняя) часть крыла; 12 - упор резинки раскрытия; 13 - шарнирный узел поворота крыла; 14 - шпангоут головного обтекателя; 15 - косынка усиления; 16 - контейнер системы спасения носителя; 17 - хвостовое оперение; 18 - резинка раскрытия оперения; 19 - шарнирный узел оперения; 20 - крепежная плата оперения; 21 - упор резинки раскрытия оперения; 22 - полоска ткани; 23 - шпилька-фиксатор; 24 - корпус носителя; 25 - стабилизатор носителя

Крыло - в плане прямоугольной формы с трапециевидными законцовками. Изготовлено - из бальзовой пластины толщиной 3 мм и длиной 500 мм. Профиль крыла - плоско-выпуклый. Задается он при обработке всей пластины наждачной бумагой, наклеенной на брусок. После этого крыло покрывают двумя слоями нитролака и разрезают на две половинки (консоли), которые, в свою очередь, режут вдоль на две равные части. Места разреза слега прошкуривают, задавая небольшой угол при соединении, обрабатывают нитролаком и соединяют шарнирно, наклеивая вдоль нижней плоскости полоски нейлоновой ткани шириной 12 мм. Этим задается некоторая кривизна профиля (вогнутость). В обеих половинах консоли сверлят по два отверстия диаметром 2 мм, отступая от линии сгиба соответственно 8 мм и 14 мм. В них продевают двойные резинки раскрытия крыла и его элементов (шляпная резинка диаметром 1 мм), которые снизу удерживаются шпилькой из проволоки или бамбука.

Соединяют крыло в одно целое при помощи крепежной платы, вырезанной из фанеры размерами 8x23 мм и толщиной 2 мм. Сверху к ней крепят шарнирный узел (13) крыла. Он состоит из П-образной петли, из шести витков стальной проволоки диаметром 0,8 мм со свободными концами длиной 12 мм и осью, вставленной в петлю и согнутой П-образно. Концы оси длиной 14 мм обматывают нитками, промазывают эпоксидной смолой и клеят к крепежной плате. На ее нижнюю поверхность клеят кусочек нейлоновой ткани размерами 22x22 мм.

После просушки к свободным концам ткани крепят консоли крыла, наклеивая ткань к нижним плоскостям его передних частей (неподвижных). Угол "V" крыла (около 7°) задается при этом путем скашивания боковых плоскостей платы и фиксируется резиновой нитью, вставленной в отверстие консоли. Корневые окончания консолей и сверху, и снизу усиливают накладками из фанеры.

Свободные концы петли шарнирного узла привязывают нитками на эпоксидной смоле к рейке-фюзеляжу снизу на расстоянии 34 мм от среза "посадочной" юбки головного обтекателя. Для увеличения поверхностей прилегания крыла, а точнее крепежной платы, к ней сверху приклеивают накладку из липы сечением 6x9 мм, делая желобок в месте касания рейки-фюзеляжа. Толщиной накладки регулируют установочный угол крыла. Снизу в плату на расстоянии 11 мм от передней ее части вклеивают крючок для крепления резинки возврата крыла. Вторая точка ее фиксации - на крючке, закрепленном сверху на рейке на расстоянии 7 мм от передней кромки крыла. Такое расположение крючков создает необходимый момент силы для установки крыла в планирующее положение.

Хвостовое оперение - V-образное, с углом развала 140°. Шарнирное крепление - аналогично крылу. Две бальзовые пластины толщиной 1 мм при помощи полоски ткани соединяют с подобной платой, которую, в свою очередь, шарнирно крепят снизу к хвостовой части балки-фюзеляжа. Шарнирный узел подобен узлу крепления крыла и выполнен из проволоки диаметром 0,4 мм. Угол установки хвостового оперения подбирается толщиной накладки, приклеиваемой сверху на плату. В плоскостях хвостового оперения на расстоянии 14 мм от края делают отверстия диаметром 2 мм для резинки. Здесь решение - оригинальное. Резинка, концы которой фиксируются снизу двумя шпильками, обеспечивает и раскрытие стабилизатора, и установку его в положение для планирования.

Возможные люфты в шарнирном соединении выбираются натяжением резинки.

Полетная масса ракетоплана - около 17 г.

Подготовка модели к полету

Прежде всего при подготовке модели к полету находят расположение центра тяжести. Он должен располагаться на расстоянии 25 мм от передней кромки крыла (немного впереди линии складывания консолей). Если нет - загружают носовую или хвостовую часть фюзеляжа. Затем пускают модель с рук на планирование, добиваясь при этом устойчивого полета с небольшим углом снижения. Если модель пикирует - меняют угол установки стабилизатора, поднимая немного вверх заднюю его часть. Если кабрирует - ее отпускают. Это делается подбором толщины накладки. Добившись хорошего планирования, можно запускать модель на двигателе импульсом до 1 н·c, достигая желаемого результата.

Авторы: В.Рожов, А.Совков, А.Смола

 İlginç makaleler öneriyoruz bölüm Modelleme:

▪ kalay bükme

▪ matkap bebek

▪ Bir gemide buhar motoru

Diğer makalelere bakın bölüm Modelleme.

Oku ve yaz yararlı bu makaleye yapılan yorumlar.

<< Geri

En son bilim ve teknoloji haberleri, yeni elektronikler:

Bahçelerdeki çiçekleri inceltmek için makine 02.05.2024

Modern tarımda, bitki bakım süreçlerinin verimliliğini artırmaya yönelik teknolojik ilerleme gelişmektedir. Hasat aşamasını optimize etmek için tasarlanan yenilikçi Florix çiçek seyreltme makinesi İtalya'da tanıtıldı. Bu alet, bahçenin ihtiyaçlarına göre kolayca uyarlanabilmesini sağlayan hareketli kollarla donatılmıştır. Operatör, ince tellerin hızını, traktör kabininden joystick yardımıyla kontrol ederek ayarlayabilmektedir. Bu yaklaşım, çiçek seyreltme işleminin verimliliğini önemli ölçüde artırarak, bahçenin özel koşullarına ve içinde yetişen meyvelerin çeşitliliğine ve türüne göre bireysel ayarlama olanağı sağlar. Florix makinesini çeşitli meyve türleri üzerinde iki yıl boyunca test ettikten sonra sonuçlar çok cesaret vericiydi. Birkaç yıldır Florix makinesini kullanan Filiberto Montanari gibi çiftçiler, çiçeklerin inceltilmesi için gereken zaman ve emekte önemli bir azalma olduğunu bildirdi. ... >>

Gelişmiş Kızılötesi Mikroskop 02.05.2024

Mikroskoplar bilimsel araştırmalarda önemli bir rol oynar ve bilim adamlarının gözle görülmeyen yapıları ve süreçleri derinlemesine incelemesine olanak tanır. Bununla birlikte, çeşitli mikroskopi yöntemlerinin kendi sınırlamaları vardır ve bunların arasında kızılötesi aralığı kullanırken çözünürlüğün sınırlandırılması da vardır. Ancak Tokyo Üniversitesi'ndeki Japon araştırmacıların son başarıları, mikro dünyayı incelemek için yeni ufuklar açıyor. Tokyo Üniversitesi'nden bilim adamları, kızılötesi mikroskopinin yeteneklerinde devrim yaratacak yeni bir mikroskobu tanıttı. Bu gelişmiş cihaz, canlı bakterilerin iç yapılarını nanometre ölçeğinde inanılmaz netlikte görmenizi sağlar. Tipik olarak orta kızılötesi mikroskoplar düşük çözünürlük nedeniyle sınırlıdır, ancak Japon araştırmacıların en son geliştirmeleri bu sınırlamaların üstesinden gelmektedir. Bilim insanlarına göre geliştirilen mikroskop, geleneksel mikroskopların çözünürlüğünden 120 kat daha yüksek olan 30 nanometreye kadar çözünürlükte görüntüler oluşturmaya olanak sağlıyor. ... >>

Böcekler için hava tuzağı 01.05.2024

Tarım ekonominin kilit sektörlerinden biridir ve haşere kontrolü bu sürecin ayrılmaz bir parçasıdır. Hindistan Tarımsal Araştırma Konseyi-Merkezi Patates Araştırma Enstitüsü'nden (ICAR-CPRI) Shimla'dan bir bilim insanı ekibi, bu soruna yenilikçi bir çözüm buldu: rüzgarla çalışan bir böcek hava tuzağı. Bu cihaz, gerçek zamanlı böcek popülasyonu verileri sağlayarak geleneksel haşere kontrol yöntemlerinin eksikliklerini giderir. Tuzak tamamen rüzgar enerjisiyle çalışıyor, bu da onu güç gerektirmeyen çevre dostu bir çözüm haline getiriyor. Eşsiz tasarımı, hem zararlı hem de faydalı böceklerin izlenmesine olanak tanıyarak herhangi bir tarım alanındaki popülasyona ilişkin eksiksiz bir genel bakış sağlar. Kapil, "Hedef zararlıları doğru zamanda değerlendirerek hem zararlıları hem de hastalıkları kontrol altına almak için gerekli önlemleri alabiliyoruz" diyor ... >>

Arşivden rastgele haberler

Poliüretan atıklar için yeni hayat 04.09.2019

Illinois Üniversitesi'nden (ABD) bir ekip, poliüretanı parçalamak için başka kullanışlı ürünlere dönüştürülmesini sağlayan bir yöntem geliştirdi. Bilim adamları, çalışmalarının sonuçlarını Amerikan Kimya Derneği Ulusal Toplantısında sundular.

Poliüretan, plastik bir polimer malzemedir. Çevremizdeki birçok nesnede bulunur: boyalarda, araba parçalarında, mobilya dolgularında, ev yalıtım malzemelerinde. Bakıma muhtaç duruma düştüklerinde, bu maddeler çöp sahasına gönderilir ve yakılarak toksik yan ürünler açığa çıkar. Poliüretanın bileşimi, yok edilmesi zor olan iki bileşen içerir: nitrojen, karbon ve oksijenden oluşan izosiyanatlar; ve polioller olarak adlandırılan alkol grupları.

Teknolojiyi danışmanı Steven Zimmerman ile birlikte geliştiren lisansüstü öğrencisi Ephraim Morado, "Polyoller genellikle petrol bazlıdır ve parçalanamaz" dedi. Bu sorunu çözmek için ekip, poliole daha kolay parçalanan bir kimyasal birim olan asetal ekledi. Ve poliüretanlar suya dayanıklı olduğu için araştırmacılar, su içermeyen solventlerde ayrışan bir asetal birimi icat ettiler.

Bilim adamları, başlangıç ​​materyaline bir trikloroasetik asit ve diklorometan kombinasyonu eklediler - bunun sonucunda materyal şişti ve oda sıcaklığında hızla ayrışmaya başladı. Ortaya çıkan bozunma ürünleri daha sonra yeni malzemelere yönlendirilebilir. Örneğin araştırmacılar, lastik bantlarda, ambalajlarda ve araba parçalarında kullanılan bir tür poliüretan olan elastomerleri yapıştırıcılara dönüştürebildiler.

Yeni teknolojinin yazarları, diğer poliüretan malzemeler üzerinde de test ediyor. Ayrıca poliüretanı parçalamak için sirke gibi daha hafif çözücülerle deney yapmayı planlıyorlar.

Diğer ilginç haberler:

▪ Örümcekler elektromanyetik alanlar kullanarak uçarlar

▪ Astronotların tedavisi için nanobotlar

▪ uçan salyangoz

▪ Asteroitlerden madencilik

▪ Tabletlerde şarap

Bilim ve teknolojinin haber akışı, yeni elektronik

 

Ücretsiz Teknik Kitaplığın ilginç malzemeleri:

▪ Web sitesinin radyo bölümü. Makale seçimi

▪ Makale Lakonizm. Özlü kısalık. Popüler ifade

▪ makale En büyük süpermarkette kaç kişi çalışıyor? ayrıntılı cevap

▪ makale Kadife bob. Efsaneler, yetiştirme, uygulama yöntemleri

▪ bir radyo amatör tasarımcısı için makale. dizin

▪ makale Telefon setinin korunması. Radyo elektroniği ve elektrik mühendisliği ansiklopedisi

Bu makaleye yorumunuzu bırakın:

Adı:


E-posta isteğe bağlı):


Yorum:





Bu sayfanın tüm dilleri

Ana sayfa | Kütüphane | Makaleler | Site haritası | Site incelemeleri

www.diagram.com.ua

www.diagram.com.ua
2000-2024