Menü English Ukrainian Rusça Ana Sayfa

Hobiler ve profesyoneller için ücretsiz teknik kütüphane Ücretsiz teknik kütüphane


TEKNOLOJİ TARİHİ, TEKNOLOJİ, ÇEVREMİZDEKİ NESNELER
Ücretsiz kütüphane / Rehber / Teknolojinin, teknolojinin, çevremizdeki nesnelerin tarihi

Röntgen cihazı. Buluş ve üretim tarihi

Teknolojinin, teknolojinin, çevremizdeki nesnelerin tarihi

Rehber / Teknolojinin, teknolojinin, çevremizdeki nesnelerin tarihi

makale yorumları makale yorumları

Рентгеновский аппарат - совокупность оборудования для получения и использования рентгеновского излучения. Используется в медицине (рентгенография, рентгеноскопия, рентгенотерапия), дефектоскопии. Рентгеновские аппараты особой конструкции применяются в рентгеноспектральном и рентгеноструктурном анализе.

röntgen cihazı
röntgen cihazı

8 ноября 1895 г. профессор Вюрцбургского университета (Германия) Вильгельм Рентген, пожелав жене спокойной ночи, спустился в свою лабораторию, чтобы еще немного поработать.

Когда настенные часы пробили одиннадцать, ученый погасил лампу и вдруг увидел, как на столе разлилось призрачное зеленоватое сияние. Оно исходило от стеклянной банки, в которой находились кристаллы платиносинеродистого бария. Способность этого вещества флюоресцировать под действием солнечных лучей была давно известна. Но обычно в темноте свечение прекращалось.

Рентген нашел источник излучения. Им оказалась невыключенная изза невнимательности круксова трубка, находившаяся в полутора метрах от банки с солью. Трубка находилась под плотным картонным колпаком без щелей.

Круксова трубка была изобретена примерно за 40 лет до наблюдения Рентгена. Она представляла собой электровакуумную трубкуисточник, как тогда говорили, "катодных лучей". Эти лучи, ударяясь о стеклянную стенку лампы, тормозились и давали на ней световое пятно, но вырваться за пределы лампы не могли.

Заметив сияние, Рентген остался в лаборатории и приступил к методическому изучению неизвестной радиации. Он устанавливал на разных расстояниях от трубки экран, покрытый бариевой солью. Тот мерцал даже на расстоянии двух метров от трубки. Неизвестные лучи, или, как Рентген их назвал Хлучи, проникали через все преграды, которые оказались под рукой ученого: книгу, доску, эбонитовую пластинку, оловянную фольгу и даже неизвестно откуда взявшуюся колоду карт. Все материалы, до того считавшиеся непрозрачными, стали для лучей неизвестного происхождения проникаемыми.

Рентген начал складывать стопку из листов станиоля: два слоя, три, десять, двадцать, тридцать. Экран постепенно начал темнеть и наконец стал абсолютно черным. Толстый том в тысячу страниц не дал такого эффекта. Отсюда профессор сделал вывод, что проницаемость предмета зависит не столько от толщины, сколько от материала. Когда ученый просветил шкатулку с набором гирь, то увидел, что силуэты металлических гирь были видны гораздо лучше, чем слабая тень деревянного футляра. Потом, для сравнения, он приказал принести свое двуствольное ружье.

Затем Рентген увидел жуткое зрелище: двигающиеся тени живого скелета. Оказалось, что кости руки менее прозрачны для Хлучей, чем окружающие их мягкие ткани.

Исследователь изучал открытое им излучение на протяжении 50 суток. Его жена, не выдержавшая молчаливого добровольного затворничества мужа, разрыдалась, и, чтобы ее успокоить, а заодно продемонстрировать свое изобретение близкому человеку, Рентген делает рентгеновский снимок кисти супруги. На нем были видны темные силуэты косточек, а на одной из фаланг черное пятно обручального кольца.

Лишь спустя семь недель после начала добровольного затворничества, 28 декабря 1895 г., Рентген оправил в Физикомедицинское общество Вюрцбургского университета свою 30страничную рукопись "О новом типе лучей", сделав приписку: "Предварительное сообщение".

röntgen cihazı
Рентгеновская установка для экспериментов с Х-лучами. Пример простейшего рентгеновского аппарата. Состоит из источника высокого напряжения (катушка Румкорфа) и рентгеновской трубки (трубка Крукса). Изображение регистрируется на фотопластинку

Первая работа, посвященная великому открытию, окажется потом бессмертной: в ней ничего не будет ни опровергнуто, ни дополнено в течение многих лет. Информация об Хлучах, облетевшая в первую неделю 1896 г. весь свет, потрясла мир. Новое излучение позже было в честь первооткрывателя названо "рентгеновским".

Свою рукопись Рентген направил и по другим адресам, в частности своему давнему коллеге профессору Венского университета Ф. Экснеру. Тот, прочитав рукопись, сразу оценил ее по достоинству и немедленно ознакомил с ней сотрудников. Среди них оказался ассистент Э. Лехер, сын редактора венской газеты "Нойе фрайе прессе". Он попросил у Экснера текст на ночь, отнес его своему отцу и убедил поставить срочно в номер важную научную новость.

Ее дали на первой полосе, для чего пришлось даже приостановить типографские машины. Утром 3 января 1896 г. Вена узнала о сенсации. Статью перепечатали другие издания. Когда вышел научный журнал с оригинальной статьей Рентгена, номер расхватали за один день.

Сразу нашлись и претенденты на приоритет нового открытия. Рентгена обвиняли даже в плагиате. Среди кандидатов на первенство оказался и профессор Ф. Ленард, пытавшийся назвать лучи своим именем.

Оказалось, что первая рентгенограмма была действительно сделана в США еще в 1890 г. У американцев было больше прав на приоритет в открытии, чем у того же Ленарда, проводившего свои опыты с круксовой трубкой позже. Но профессор Гуд спид в 1896 г. просто попросил помнить, что первый снимок катодными лучами был сделан в лаборатории Пенсильванского университета. Ведь истинная природа этих лучей была установлена лишь Рентгеном.

Всемирная слава, нежданно свалившаяся на доселе безвестного провинциального ученого, привела его на первых порах в растерянность. Он стал избегать не только репортеров, но даже ученых. Профессор категорически отверг домогательства бизнесменов, отказавшись от участия в эксплуатации своего открытия, от привилегий, лицензий, патентов на свои изобретения, на усовершенствованные им генераторы Xлучей. Отсутствие монополии на выпуск рентгеновской техники привело к ее бурному развитию во всем мире.

Ученого обвиняли в отсутствии патриотизма. На предложение Берлинского акционерного электротехнического общества, предлагавшего большие деньги и работу в прекрасно оборудованных лабораториях, Рентген ответил: "Мое изобретение принадлежит всему человечеству".

röntgen cihazı
Оперативный стол М. Сегюи для рентгеноскопии и фотографирования

После ошеломляющего успеха своего открытия Рентген вновь удалился в добровольное заключение в свою лабораторию. Он сделал передышку лишь после того, как 9 марта 1896 г. завершил вторую научную статью о новооткрытой радиации. Третья, заключительная - "Дальнейшие наблюдения за свойствами Хлучей" - была сдана в печать 10 марта 1897 года.

В 1904 г. англичанин Ч. Баркла экспериментально подтвердил теоретическую догадку своего соотечественника Дж. Стокса, что рентгеновские лучи имеют электромагнитную природу. Область рентгеновского излучения на спектре занимает область между ультрафиолетовым и гаммаизлучением. По одной классификации это диапазон от 10~5 до 10"12 сантиметра, по другой - от 10~6 до 10"10 сантиметра.

Изобретение немецкого ученого вызвало в мире неожиданные реакции. Так, в 1896 г. депутат американского штата НьюДжерси Рид предложил законопроект, запрещавший применение Хлучей в театральных биноклях, дабы они не могли проникнуть не только через одежду, но и через плоть в душу. А пресса в Европе и Америке предупреждала об опасности "мозговой фотографии", позволяющей читать самые потаенные чужие мысли.

В ответ на это некоторые дельцы рекламировали свои изделия - портмоне, шкатулки, сейфы, даже шляпы, - способные, по их словам, уберегать от страшных лучей свое содержимое.

Особый отклик у читателей нашла информация о том, что при помощи рентгеновских лучей можно запечатлевать на извилинах коры головного мозга текст или рисунок для запоминания. Хлучам приписывали свойство возвращать юность старикам и жизнь умирающим. А также превращать свинец в золото.

Но, с другой стороны, только за "рентгеновский" 1896 год вышло более тысячи научных работ и почти 50 книг по применению Х-лучей в медицине. Еще в феврале 1896 г. В. Тонков представил в Петербургское антропологическое общество доклад о применении Х-лучей для изучении скелета. Так были заложены основы новой дисциплины - рентгеноанатомии. Сейчас она стала фундаментом современной диагностики. Чуть позже А. Яновский стал применять ее для систематического обследования пациентов. В боевой обстановке рентгеноскопию применил русский врач В. Кравченко, оборудовавший на крейсере "Аврора" рентгеновский кабинет. В Цусимском сражении он обследовал раненых матросов, находя и извлекая из тела осколки.

Рентгенология помогала диагностировать на ранних стадиях рак и туберкулез. Рентгеновское излучение в больших дозах вредно для организма человека. Но, тем не менее, оно применяется для борьбы со злокачественными опухолями.

В начале XX в. для изготовления рентгенограммы требовалось облучение в течение 1,5-2 часов изза несовершенства оборудования и малой чувствительности пленки. Затем для съемки стали использовать усиливающие экраны, между которыми располагалась пленка. Это позволило без увеличения чувствительности пленки сократить время экспозиции в десятки раз. Благодаря этому рентгенография по разрешающей способности превзошла рентгеноскопию.

Поскольку пленка для рентгеновских снимков требовала большого количества серебра, рентгенографию постепенно стала вытеснять флюорография - фотосъемка с флюоресцирующего экрана. Флюорограмма имеет лишь один светочувствительный слой и по площади в 10-20 раз меньше стандартной рентгенограммы, что дает большую экономию серебра при снижении лучевых нагрузок. Изображение увеличивается с помощью проекторов. Компактная флюорографическая камера, установленная на электронно-оптический усилитель стационарного аппарата, позволяет получать многократное изображение с коротким интервалом по заданной программе. Так можно регистрировать быстротекущие процессы. В частности, этот метод применяется для контроля продвижения специальной массы, содержащей барий (хорошо видимый в рентгеновских лучах) по желудочно-кишечному тракту человека.

Для экономии пленки применяется специальная селеновая пластина, накапливающая электростатический заряд. Под воздействием рентгеновского излучения она теряет заряд, сохраняя его лишь на затемненных участках. В результате на поверхности пластины возникает скрытое изображение. Его проявляют, опыляя тонкодисперсным красящим порошком, точно воспроизводящим распределение света и теней. Одна селеновая пластина выдерживает 2-3 тысячи процедур, сберегая до 3 кг серебра. Изображение не уступает по качеству рентгенограмме.

röntgen cihazı
Устройство рентгенодиагностического аппарата (нажмите для увеличения): Vc - питающее напряжение; Va - напряжение для исследования; РН - регулятор напряжения; РВ - реле времени; ГУ - генераторное устройство, включающее выпрямители; РТ - рентгеновская трубка; Ф - фильтр; Д - диафрагма; О - объект исследования (пациент); Р - отсеивающий растр; РЭ - камера экспонометра рентгеновского излучения; П - кассета с рентгенографической пленкой и усиливающими экранами; УРИ - усилитель рентгеновского изображения; ТТ - телевизионная передающая трубка; ФК - фотокамера; ВКУ - видеоконтрольное устройство; ФЭУ - фотоэлектронный умножитель; СЯ - стабилизатор яркости; БЭ - блок обработки сигнала экспонометра; БН - блок управления накалом рентгеновской трубки с вычислительным устройством; ТН - трансформатор накала; S - оптическая плотность почернения фотоматериала; В - яркость свечения флюоресцентного экрана; пунктиром обозначен рабочий пучок рентгеновского излучения; РТ - рентгеновская трубка; Ф - фильтр; Д - диафрагма; О - объект исследования (пациент); Р - отсеивающий растр; РЭ - камера экспонометра рентгеновского излучения; П - кассета с рентгенографической пленкой и усиливающими экранами; УРИ - усилитель рентгеновского изображения; ТТ - телевизионная передающая трубка; ФК - фотокамера; ВКУ - видеоконтрольное устройство; ФЭУ - фотоэлектронный умножитель; СЯ - стабилизатор яркости; БЭ - блок обработки сигнала экспонометра; БН - блок управления накалом рентгеновской трубки с вычислительным устройством; ТН - трансформатор накала; S - оптическая плотность почернения фотоматериала; В - яркость свечения флюоресцентного экрана; пунктиром обозначен рабочий пучок рентгеновского излучения

Помимо черно-белой, существует цветная рентгенография. Сперва цветную рентгенограмму получали, трижды снимая объект лучами неодинаковой жесткости. Так получали три негатива, которые окрашивали синим, зеленым и красным цветами, после чего их совмещали и делали отпечаток на цветной пленке.

Позже, чтобы уменьшить дозу облучения, применили метод тоноразделения. Здесь была нужна однократная экспозиция. На снимке выделяли различные зоны плотности и на каждую изготавливали свою копию рентгенограммы. Затем их совмещали на цветной пленке, получая условно окрашенное изображение.

Обычный рентгеновский снимок дает лишь плоское изображение. Часто это не позволяет определить, например, точное местоположение инородного тела в организме, а несколько рентгенограмм, полученных с разных позиций, дают лишь приближенное представление об этом. Для превращения плоского изображения в объемное применяется стереоренгенография. С этой целью изготовляют два снимка, составляющие стереопару: на них изображена одна и та же картина, но запечатленная так, как ее видят правый и левый глаз. При рассматривании обоих негативов в специальном аппарате, они совмещаются в один, образуя глубину.

При стереорентгеноскопии пациента просвечивают двумя трубками, включающимися поочередно со скоростью 50 раз в секунду каждая. Обе серии импульсов поступают на электронно-оптический преобразователь, откуда они попеременно, синхронно с работой трубок снимаются двумя телевизионными системами. Обе картины совмещаются в одну с помощью поляризационных очков.

Глубину залегания, пространственную структуру, форму и величину патологических образований оценивают и более простыми средствами, например с помощью томографии - послойных снимков. При проведении томографии больной лежит на столе. Над ним движется рентгеновская рубка, а под ним в противоположном направлении перемещается пленка. Резкими оказываются только те элементы, которые находятся на оси вращения рычага, соединяющего трубку и пленку. Проводится серия снимков, отображающих тонкие слои толщиной в несколько миллиметров. По ним легко установить, где находится чужеродное тело или болезненный очаг.

С появлением электронно-вычислительных машин и компьютеров стало возможным программное управление всей процедурой рентгенодиагностики - от съемки до получения снимков.

Спектр применения рентгеновских лучей широк.

В 20-30-е годы прошлого века появились радиационная генетика и селекция, позволяющие получать стойкие варианты микробов с нужными свойствами, сорта растений с повышенной урожайностью. Воздействуя на организмы проникающей радиацией и затем, проводя отбор, ученые проводят ускоренную биологическую эволюцию.

В 1912 г. в Мюнхене М. фон Лауэ выдвинул идею при помощи Хлучей исследовать внутреннее строение кристалла. Его идея вызвала споры среди коллег, и, чтобы разрешить их, В. Фридрих поставил на пути лучей кристалл и рядом, сбоку, фотопластинку для их регистрации, когда они отклонятся под прямым углом, как при обычной дифракции. Результатов не было до тех пор, пока П. Книппинг не поставил пластинку не сбоку, а за кристаллом. На ней появился симметричный узор из темных пятен.

Так появился рентгеноструктурный анализ. Сначала его применение ограничивалось получением лауэграмм - снимков, отражавших строение монокристалла. Они позволяли обнаруживать дефекты решетки, внутренние напряжения и т. п. В 1916 г. П. Дебай и П. Шеррер приспособили этот метод для изучения поликристаллических материалов - порошков, сплавов. Такие снимки назвали дебаеграммы. По ним определяют строение и состав образцов, размеры и ориентацию включений.

В 1930-е годы английские ученые Д. Бернал и Д. Кроуфут-Ходжкин осуществили рентгеноструктурный анализ белков. Съемка обнаружила у них внутреннюю упорядоченность. Благодаря такому анализу стала возможной пространственная модель ДНК, которую предложили в 1953 г. Д. Уотсон и Ф. Крик. Для этого они воспользовались дифракционными картинами ДНК, полученными М. Уилкинсом.

Рентгеновские лучи применяют для контроля качества различных материалов и изделий. Они позволяют увидеть внутренние дефекты - трещины, раковины, непровары, включения. Этот метод называется рентгенодефектоскопия.

Х-лучи позволяют искусствоведам заглядывать под верхний слой картин, иногда помогая обнаруживать скрытые веками изображения. Так, при изучении картины Рембрандта "Даная", был открыт первоначальный вариант полотна, позже переделанный автором. Подобное исследования прошли многие живописные произведения в разных картинных галереях.

röntgen cihazı
Интроскоп для досмотр багажа

Рентгеновское излучение применяется в интроскопах - устройствах, которыми сейчас оборудованы таможни, контрольно-пропускные пункты. Они позволяют обнаруживать спрятанную взрывчатку, оружие и наркотики.

Yazar: Pristinsky V.L.

 İlginç makaleler öneriyoruz bölüm Teknolojinin, teknolojinin, çevremizdeki nesnelerin tarihi:

▪ Termal Görüntüleme Teşhisi

▪ teflon

▪ Frizbi

Diğer makalelere bakın bölüm Teknolojinin, teknolojinin, çevremizdeki nesnelerin tarihi.

Oku ve yaz yararlı bu makaleye yapılan yorumlar.

<< Geri

En son bilim ve teknoloji haberleri, yeni elektronikler:

Dokunma emülasyonu için suni deri 15.04.2024

Mesafenin giderek yaygınlaştığı modern teknoloji dünyasında, bağlantıyı ve yakınlık duygusunu sürdürmek önemlidir. Saarland Üniversitesi'nden Alman bilim adamlarının suni derideki son gelişmeleri, sanal etkileşimlerde yeni bir dönemi temsil ediyor. Saarland Üniversitesi'nden Alman araştırmacılar, dokunma hissini uzak mesafelere iletebilen ultra ince filmler geliştirdiler. Bu son teknoloji, özellikle sevdiklerinden uzakta kalanlar için sanal iletişim için yeni fırsatlar sunuyor. Araştırmacılar tarafından geliştirilen sadece 50 mikrometre kalınlığındaki ultra ince filmler tekstillere entegre edilebiliyor ve ikinci bir deri gibi giyilebiliyor. Bu filmler anne veya babadan gelen dokunsal sinyalleri tanıyan sensörler ve bu hareketleri bebeğe ileten aktüatörler gibi görev yapar. Ebeveynlerin kumaşa dokunması, basınca tepki veren ve ultra ince filmi deforme eden sensörleri etkinleştirir. Bu ... >>

Petgugu Global kedi kumu 15.04.2024

Evcil hayvanların bakımı, özellikle evinizi temiz tutmak söz konusu olduğunda çoğu zaman zorlayıcı olabilir. Petgugu Global girişiminin, kedi sahiplerinin hayatını kolaylaştıracak ve evlerini mükemmel şekilde temiz ve düzenli tutmalarına yardımcı olacak yeni ve ilginç bir çözümü sunuldu. Startup Petgugu Global, dışkıyı otomatik olarak temizleyerek evinizi temiz ve ferah tutan benzersiz bir kedi tuvaletini tanıttı. Bu yenilikçi cihaz, evcil hayvanınızın tuvalet aktivitesini izleyen ve kullanımdan sonra otomatik olarak temizlemeyi etkinleştiren çeşitli akıllı sensörlerle donatılmıştır. Cihaz, kanalizasyon sistemine bağlanarak, sahibinin müdahalesine gerek kalmadan verimli atık uzaklaştırılmasını sağlar. Ek olarak, tuvaletin büyük bir sifonlu depolama kapasitesi vardır, bu da onu çok kedili evler için ideal kılar. Petgugu kedi kumu kabı, suda çözünebilen kumlarla kullanılmak üzere tasarlanmıştır ve çeşitli ek özellikler sunar. ... >>

Bakımlı erkeklerin çekiciliği 14.04.2024

Kadınların "kötü çocukları" tercih ettiği klişesi uzun zamandır yaygın. Ancak Monash Üniversitesi'nden İngiliz bilim adamlarının son zamanlarda yaptığı araştırmalar bu konuya yeni bir bakış açısı sunuyor. Kadınların, erkeklerin duygusal sorumluluklarına ve başkalarına yardım etme isteklerine nasıl tepki verdiklerini incelediler. Araştırmanın bulguları, erkekleri kadınlar için neyin çekici kıldığına dair anlayışımızı değiştirebilir. Monash Üniversitesi'nden bilim adamlarının yürüttüğü bir araştırma, erkeklerin kadınlara karşı çekiciliği hakkında yeni bulgulara yol açıyor. Deneyde kadınlara, evsiz bir kişiyle karşılaştıklarında verdikleri tepkiler de dahil olmak üzere çeşitli durumlardaki davranışları hakkında kısa öykülerin yer aldığı erkeklerin fotoğrafları gösterildi. Erkeklerden bazıları evsiz adamı görmezden gelirken, diğerleri ona yiyecek almak gibi yardımlarda bulundu. Bir araştırma, empati ve nezaket gösteren erkeklerin, kadınlar için empati ve nezaket gösteren erkeklere göre daha çekici olduğunu ortaya çıkardı. ... >>

Arşivden rastgele haberler

Petrol ve gaz patlamaları düşünülenden daha tehlikeli 10.10.2022

ABD'den uzmanlar, petrol ve gaz patlamalarının çevre üzerindeki etkisini inceledi. Tesislerin işletilmesi sonucunda üretilen metan, dünya çapında çevreye büyük zarar vermektedir.

Petrol ve gaz şirketlerine göre alevler, yayılan doğal gazın %98'ini yakıyor. Ancak üç ABD petrol ve gaz sahasının gözlemleri, verimliliğin sadece yaklaşık %91 olduğunu gösteriyor.

Doğal gaz sızıntısı çoğunlukla metandır. Bu sera gazı atmosferde sadece dokuz ila 80 yıl kalır, ancak ısınma potansiyeli karbondioksitin 98 katıdır. Bu nedenle petrol ve gaz şirketleri, daha az güçlü karbondioksit ve su üretmek için metan yakarak işaret fişeği yakıyorlar. Sanayi ve ABD hükümeti, bu fişeklerin %XNUMX verimlilikle çalıştığını varsayıyordu. Önceki araştırmalar bunun aşırı iyimser olabileceğini göstermiştir.

Ann Arbor'daki Michigan Üniversitesi'nde atmosferik bilim adamı olan Genevieve Plante ve meslektaşları, Kuzey Dakota'daki Bakken Havzası'nın yanı sıra Teksas'taki Permiyen ve Eagle Ford Havzalarındaki 300'den fazla fişekten havayı örneklemek için uçak gönderdiler. ABD'deki alevlenmenin yüzde 80'inden fazlasını oluşturuyor. Örnekler, önceden düşünülenden beş kat daha fazla yanmamış metan gösterdi.

Verimlilikteki %98'den %91'e düşüş küçük görünebilir, ancak sonuçları önemlidir. CO2 fazı yerine metan fazında olan herhangi bir yüzde, önemli ölçüde daha problemlidir.

Diğer ilginç haberler:

▪ Beyaz ışıkla renkli resimler çizme

▪ Sensörleri iç organlara yapıştırmanızı sağlayan jel

▪ Bir ay daha az

▪ Duruş ve hareketi takip eden akıllı giysiler

▪ Kendi kendine giden arabaların işaretsiz hareketi

Bilim ve teknolojinin haber akışı, yeni elektronik

 

Ücretsiz Teknik Kitaplığın ilginç malzemeleri:

▪ sitenin RF güç amplifikatörleri bölümü. Makale seçimi

▪ makale Daha iyi ölüm, ama şerefli, utanç verici utanç verici günlerden. Popüler ifade

▪ makale Bir sandviç neyden yapılır? ayrıntılı cevap

▪ makale Kayak üzerinde bisiklet. Kişisel ulaşım

▪ makale Katran verniği. Basit tarifler ve ipuçları

▪ Makale Dijital zamanlayıcılı cep telefonu şarj cihazı. Radyo elektroniği ve elektrik mühendisliği ansiklopedisi

Bu makaleye yorumunuzu bırakın:

Adı:


E-posta isteğe bağlı):


Yorum:





Bu sayfanın tüm dilleri

Ana sayfa | Kütüphane | Makaleler | Site haritası | Site incelemeleri

www.diagram.com.ua

www.diagram.com.ua
2000-2024